instagram

Students consider ethical issues and privacy in the context of data science.

Prerequisites

Relevant Standards

Select one or more standards from the menu on the left (⌘-click on Mac, Ctrl-click elsewhere).

CSTA Standards
3A-AP-16

Design and iteratively develop computational artifacts for practical intent, personal expression, or to address a societal issue by using events to initiate instructions.

K-12CS Standards
9-12.Data and Analysis.Collection

Data is constantly collected or generated through automated processes that are not always evident, raising privacy concerns. The different collection methods and tools that are used influence the amount and quality of the data that is observed and recorded.

9-12.Impacts of Computing.Culture

The design and use of computing technologies and artifacts can improve, worsen, or maintain inequitable access to information and opportunities.

9-12.Impacts of Computing.Safety, Law, and Ethics

Laws govern many aspects of computing, such as privacy, data, property, information, and identity. These laws can have beneficial and harmful effects, such as expediting or delaying advancements in computing and protecting or infringing upon people’s rights. International differences in laws and ethics have implications for computing.

P1

Fostering an Inclusive Computing Culture

Next-Gen Science Standards
HS-SEP7-1

Compare and evaluate competing arguments or design solutions in light of currently accepted explanations, new evidence, limitations (e.g., trade-offs), constraints, and ethical issues.

Oklahoma Standards
OK.L1.IC.C.01

Evaluate the ways computing impacts personal, ethical, social, economic, and cultural practices.

Lesson Goals

Students will be able to…​

  • Describe ethical and privacy considerations when it comes to data science

Student-facing Lesson Goals

  • Let’s discuss ethical concerns surrounding data science.

Materials

Preparation

  • Make sure all materials have been gathered

  • Decide how students will be grouped in pairs

  • Computer for each student (or pair), with access to the internet

  • Student workbook, and something to write with

Supplemental Resources

Language Table

Types

Functions

Values

Number

num-sqrt, num-sqr, mean, median, modes

4, -1.2, 2/3

String

string-repeat, string-contains

"hello", "91"

Boolean

==, <, <=, >=, string-equal

true, false

Image

triangle, circle, star, rectangle, ellipse, square, text, overlay, bar-chart, pie-chart, bar-chart-summarized, pie-chart-summarized, histogram, scatter-plot, lr-plot

🔵🔺🔶

Table

count, .row-n, .order-by, .filter, .build-column

🔗Case Studies 40 minutes

Overview

Students break into groups and read one of three case studies, each dealing with a different issue in Data Science. They discuss the implications of each, then share back.

Launch

“With great power comes great responsibility”

During World War 2, scientists were engaged in a race to develop new weapons, more powerful than anything the world had ever seen. While the immediate goal was "win the war", many of the scientists realized that the weapons they were developing could be used for all sorts of things after the war was over - and not all of them were good.

With tech companies hiring Data Scientists at a staggering rate and collecting massive datasets on users for those scientists to mine, there’s a new arms race happening right now. Search engines tailor their results based on what they know about the customer doing the search, and social media networks want to recommend friends based on what they know about all of us. Both of these goals require building profiles on everyone, figuring out what their preferences are and where they tend to spend their time. They might require figuring out whether each of us is male or female, more likely to go to a movie or a play, or about to buy a dishwasher or a television.

But these datasets and profiles could be used for far more than that. What if the FBI used them to try and figure out who is likely to commit a crime, or a company tries to learn their employees' religion or sexual orientation?

As they build ever-more sophisticated models based on ever-more accurate datasets, Data Scientists need to think about the ethics of what they’re doing as well!

Investigate

Divide the class into groups of 3-4, and assign each group a different case study. Have each group choose one person to share back with the class.

  • How Target Figured Out A Teen Girl Was Pregnant Before Her Father Did (Forbes)

  • Facebook 'likes' can reveal your secrets (CNN)

  • Algorithmic Bias in Criminal Sentencing (Propublica)

(Note: The third article is quite long, but only the first half is needed for students to complete this activity.)

Synthesize

Give students time to discuss and share back. Encourage students to share back differing views on the articles.

What are some commonalities and differences among the issues raised by these articles?

OPTIONAL: Can the class come up with a list of "Rules for Ethical Data Science"?

Extension

1) For homework, have students write arguments in support of a randomly-chosen side of each case study. Select twelve students (two for each side of all three case studies), and have them debate in front of the class. Each side gets to make "opening" and "closing" arguments, and they take turns so that the closer for each side can respond to what the other side said. Then have the class vote on who was most convincing.

2) For homework, have students find their own articles about ethical issues in data science and write a one-page essay defending one side of it.

These materials were developed partly through support of the National Science Foundation, (awards 1042210, 1535276, 1648684, and 1738598). CCbadge Bootstrap:Data Science by Emmanuel Schanzer, Nancy Pfenning, Emma Youndtsmith, Jennifer Poole, Shriram Krishnamurthi, Joe Politz, Ben Lerner, Flannery Denny, and Dorai Sitaram with help from Eric Allatta and Joy Straub is licensed under a Creative Commons 4.0 Unported License. Based on a work at www.BootstrapWorld.org. Permissions beyond the scope of this license may be available by contacting schanzer@BootstrapWorld.org.