
Scoring

Students extend the data structure that represents their game to include a score, then modify their

helper functions and event handlers to update and display that score.

Product

Outcomes

Students add a score field to their gameState structure

Students modify their draw-state function to display the score on the

screen

Students modify other parts of their code to increment or decrement the

score

Materials Slides are not yet available for this lesson

Printable Lesson Plan (a PDF of this web page)

Prerequisites Simple Data Types

Contracts

Simple Inequalities

Piecewise Functions and Conditionals

Compound Inequalities: Solutions & Non-Solutions

Introduction to Data Structures

Structures, Reactors, and Animations

Key Events

Build Your Own Animation

Glossary
helper function :: a small function that handles a specific part of another computation, and gets

called from other functions

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-scoring/index.pdf
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/simple-data-types/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities1-simple/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/piecewise-functions-conditionals/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities2-compound/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-intro-to-data-structures/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-structures-reactors-animations/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-key-events/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-build-your-own-animation/index.shtml?pathway=false

Adding a Scoring System

Overview
Students add a score to their game.

Launch
The score is something that will be changing in the game, so you can be sure that it has to be added to

the ____State data structure. In our example Ninja Cat program, we’ve called our structure

GameState, which currently contains the x and y-coordinates for our player, danger, and target, plus

the speed of the danger, and speed of the target. Your game(s) will likely have different structures.

Investigate
What data type is a score? Number, String, Image, or Boolean?

What would be the score in your starting game state? (we called this START in our game.)

Change the data structure in your game so it includes a score.

Remember: Since your structure is changing, you now have to go through your game code — every

time you call the constructor function for your structure (ours is game()), the score must be included.

It may be helpful to add the score as the very first or last field of the structure, to make this easier.

How would you get the score out of one of your instances?

The GameState structure for our Ninja Cat game now looks like this:

45 minutes

data GameState:
 game(
 playerx :: Number,
 playery :: Number,
 dangerx :: Number,
 dangery :: Number,
 dangerspeed :: Number,
 targetx :: Number,
 targety :: Number,
 targetspeed :: Number,
 score :: Number)
end

https://code.pyret.org/editor#share=0B9rKDmABYlJVVkpkTmEyd1ZTaE0

Now that the game has a score, that score needs to actually increase or decrease depending on what

happens in the game. For our Ninja Cat game, we’ll say that the score should go up by 30 points when

Ninja Cat collides with the ruby (target), and down by 20 points when she collides with the dog

(danger).

Which of the if branches in your next-state-tick function checks whether your

player has collided with another character?

How would you decrease the game’s score by 20 points if the player collides with the

danger?

Hint: How many dangers does your game have? If there are multiple things your player

could hit to lose points, remember to check for each possible collision condition!

If you completed the optional challenge at the end of the Collisions Feature to write the function

game-over, you already have your own helper function to check whether or not your game over

condition is met. That will be the first condition inside next-state-tick, since we don’t want the

game to continue if it’s already over! (In our Ninja Cat game, game-over returns true if the cat collides

with the dog, AND the cat is on the ground.) After checking whether or not the game is over, the next

three conditions in our next-state-tick function check whether the player has collided with the

danger and target, as well as whether the player is jumping on the danger:

Reminder

Your students will likely have radically different games at this point in

the course. This lesson is not meant to be followed exactly, but rather

used to give students an idea of what steps they should take to add a

scoring system to their own games. For extra practice, students can

work through adding a scoring system to the Ninja Cat program as well

as their own games.

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-adding-collisions/index.shtml

next-state-tick :: GameState -> GameState
fun next-state-tick(g):
 if game-over(g): g
 # if player and danger collide while player is on the ground,
 #reset player and danger and decrease score
 else if is-collision(g.playerx, g.playery, g.dangerx, g.dangery)
 and (g.playery < 110):
 game(
 START.playerx,
 START.playery,
 750,
 g.dangery,
 g.dangerspeed,
 g.targetx,
 g.targety,
 g.targetspeed,
 g.score - 20)
 # if player and danger collide while player is jumping,
 # reset danger and increase score
 else if is-collision(g.playerx, g.playery, g.dangerx, g.dangery)
 and (g.playery > 110) and (g.playery < 300):
 game(
 g.playerx,
 200,
 -100,
 0,
 0,
 g.targetx,
 g.targety,
 g.targetspeed,
 g.score + 30)
 # if player and target collide, reset target and increase score
 else if is-collision(g.playerx, g.playery, g.targetx, g.targety):
 game(
 g.playerx,
 g.playery,
 g.dangerx,
 g.dangery,
 g.dangerspeed,
 -400,
 0,

Change your own game code so that your score increases and decreases depending on various game

conditions: Maybe your score increases when the player collides with a target, reaches a specific area

of the screen, or reaches a specific area only after picking up an item. Maybe your game’s scoring

system isn’t a seprate score at all, but a timer that increases every tick, and represents how long

someone has been playing your game. There are lots of ways to implement a scoring system, and

which one you choose will depend on the specific mechanics of your individual game.

Now your scoring system is in place, but how will the person playing your game know what their score

is? You’ll want to display the score on the screen.

Which function handles how the game state is drawn?

In the draw-state function, images are placed onto the background using put-image to draw the

game. But the score is represented by a Number: we need a way to represent it as an Image.

Thankfully, Pyret has some built-in functions that can help with this: the function num-to-string
takes in a Number for its domain and returns a String representation of that number. This string can

then be passed to the text function to return an Image that can be used in draw-state.

Copy the following contracts into your workbook:

num-to-string :: Number -> String

text :: String, Number, String -> Image

How would you use the num-to-string and text functions together to draw the

score into the game?

How do you get the score out of the game state?

How large should the text of the score be? Where should it be placed on your game

scene?

The expression:

will place the score (drawn in size 20 white text) onto the center of the BACKGROUND-IMG.

 0,
 g.score + 30)

put-image(text(num-to-string(g.score), 20, "white"), 320, 240,
BACKGROUND-IMG)

Use these functions to draw the score onto your game screen. You could also use the string-

append function to make it clear to players that the number they see is their score, like so:

text(string-append("Score: ", num-to-string(g.score)), 20,
"white")

