
Refactoring

This lesson focuses on code quality. Starting from a working program, students refactor the code to be

more readable, writing helper functions thinking structurally about a complex program.

Product

Outcomes

Students refactor existing code to make an emoji image

Materials Slides are not yet available for this lesson

Printable Lesson Plan (a PDF of this web page)

Prerequisites Simple Data Types

Contracts

Simple Inequalities

Piecewise Functions and Conditionals

Compound Inequalities: Solutions & Non-Solutions

Introduction to Data Structures

Structures, Reactors, and Animations

Key Events

Preparation The Robot Emoji file preloaded on student machines

The Emoji Refactoring file preloaded on student machines

Glossary
refactor :: the process of changing the style or structure of a program’s code, without changing the

program’s behavior

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-refactoring/index.pdf
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/simple-data-types/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities1-simple/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/piecewise-functions-conditionals/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities2-compound/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-intro-to-data-structures/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-structures-reactors-animations/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-key-events/index.shtml?pathway=false
https://code.pyret.org/editor#share=0B9rKDmABYlJVR184UFVZZFNYSTA
https://code.pyret.org/editor#share=0B9rKDmABYlJVb2FMTGJCWlRzUHc

Refactoring - a Case Study

Overview
Student are introduced to the programming concept of refactoring , which closely models the

Mathematical Practice 7: Identify and make use of structure . Students create an emoji generator, and

then refactor it to make the code cleaner.

Launch
One of the most common tasks software developers find themselves performing is refactoring code.

This means taking code that is already working and complete, and cleaning it up: adding comments,

removing unnecessary expressions, and generally making their code more readable and useable by

others. Refactoring does not change the behavior of the program, only the appearance of the code. For

instance, a messy expression like:

could be refactored into:

Both expressions return the same value, but the second is much more readable. Refactoring can

involve using existing functions (such as num-sqr in the example above) or writing new functions to

perform small tasks.

Open the Robot Emoji file and click "Run". In this file, there are two versions of the same program

written by different students.

Take a look at the definitions in this file, and, with your partner, discuss what you notice.

Which student’s code is easiest to read and understand? Which formatting do you like

better? If you were collaborating on a project with another programmer, which version of this

code would you rather to receive, and why?

Discuss with students the differences in documentation, formatting, and organization of the two

versions of the emoji code.

Next, we’re going to practice refactoring an existing program that draws an image.

Investigate

Open the Emoji Refactoring file and click "Run".

40 minutes

(((4 * 4) + (3 / (8 - 6))) * (9 * 9)) * (1 + 1)

((num-sqr(4) + (3 / 2)) * num-sqr(9)) * 2

https://code.pyret.org/editor#share=0B9rKDmABYlJVR184UFVZZFNYSTA
https://code.pyret.org/editor#share=0B9rKDmABYlJVb2FMTGJCWlRzUHc

This code draws an image of a simple face emoji. Without changing the final image produced, can you

see any opportunities to edit the code to make it more readable?

Refactor the code provided. This could include adding comments, more space betwen

expressions, or simplifying the existing expressions. Once finished, write one more

expression to create a smaller (emoji-sized) version of the original image.

This activity can be done individually or as a class, with students giving suggestions for refactoring

code projected at the front of the room. Once the refactoring is completed, students can practice

using image functions to create an emoji of their own.

