
Sam the Butterfly - Applying Inequalities

(Also available in WeScheme)

Students discover that inequalities have an important application in video games: keeping game

characters on the screen! Students apply their understanding to edit code so that it will keep Sam the

Butterfly safely in view.

Lesson Goals Students will be able to:

apply their understanding of inequalities to keep a game character on the

screen

Student-Facing

Lesson Goals

Let’s use what we know about inequalities to define the boundaries that

will keep a game character on the screen.

Prerequisites Simple Data Types

Contracts

Simple Inequalities

Compound Inequalities: Solutions & Non-Solutions

Materials PDF of all Handouts and Page

Sam the Butterfly Starter File

Lesson Slides

Printable Lesson Plan (a PDF of this web page)

Supplemental

Materials

Additional Printable Pages for Scaffolding and Practice

Glossary

inequality :: a mathematical description of the relationship between two variables or quantities, in

which they are not necessarily equal

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities3-sam-wescheme/index.shtml
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/simple-data-types/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities1-simple/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities2-compound/index.shtml?pathway=false
javascript:downloadLessonPDFs(false)
https://code.pyret.org/editor#share=13d5j4CAfaHu1Y1DzPBvqapzO-Gpr9BrH
https://docs.google.com/presentation/d/18RPi3PWHXYLxMJU4zE3puDXUenAugpnKgGCbGlZtvVE/
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities3-sam/index.pdf
javascript:downloadLessonPDFs(true)

Introducing Sam

Overview
Students are introduced to Sam the Butterfly, a simple activity in which they must write simple

inequalities to detect when Sam has gone too far in one dimension.

Launch
Open the Sam the Butterfly Starter File in a new tab and save a copy of your own.

Complete Introducing Sam, clicking "Run" and using the arrow keys to investigate the

program with your partner.

As students explore the program, they should notice that Sam’s coordinates are displayed at the top of

the screen. When Sam is at (0,0), we only see a part of Sam’s wing because Sam’s position is based on

the center of the butterfly image. Students should observe that Sam can go up to, but not beyond, an x

of -50. Students can represent this algebraically as 𝑥 > −50, or (for students who notice that Sam only

moves in increments of 10) 𝑥 ≥ −40.

Every time Sam moves, we want to check and see if Sam is safe.

To further support students, consider asking what three functions are defined in their starter files.

Then, ask students what each function should do, when working properly.

What should our left-checking function do?

Check to see if x is greater than -50.

What should our right-checking function do?

Check to see if x is less than 690.

What should is-onscreen (x, y) do?

Answers may vary. Let students drive the discussion, and don’t give away the answer!

15 minutes

https://code.pyret.org/editor#share=13d5j4CAfaHu1Y1DzPBvqapzO-Gpr9BrH
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities3-sam/pages/sam-intro.html

Investigate
Complete Left and Right with your partner.

Once finished, fix the corresponding functions in your Sam the Butterfly file, and test

them out.

Students will notice that fixing is-safe-left keeps Sam from disappearing off the left side, but fixing

is-safe-right doesn’t seem to keep Sam from disappearing off the right side! When students

encounter this, encourage them to look through the code to try and figure out why.

Why does is-onscreen(x, y) take in both x and y?

A common misconception about functions is that they need to

use all of their variables. This misconception shows up as soon as

students see a horizontal line written using function notation:

𝑓(𝑥) = 15 doesn’t use the variable 𝑥 at all. Function definitions can

also take in many variables and only use some of them, for

instance 𝑓(𝑔,𝑚) = 15𝑔.

In this case, the "screen" that is-onscreen (x, y) refers to is

two-dimensional and Sam moves in both directions. Even though

is-onscreen is tracking both Sam’s x- and y-coordinates, for now

we’re looking to write a function that only evaluates where Sam

is on the left and right. In other words, is-onscreen (x, y) takes

in two variables, but only uses one of them!

When we add this function to our Game Starter File, it’s

important that is-onscreen (x, y) only changes the x-

coordinate, because the Game Starter File has other (hidden)

functions that will control the characters' y-coordinates and we

don’t want to interfere with them.

However, later on in this lesson we will discuss how students with

time and energy can challenge themselves to keep Sam safe in all

directions by defining a function that uses both of the variables it

takes in!

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities3-sam/pages/left-and-right.html

Emphasize to students that they cannot trust the behavior of a complex system! After looking closely

at examples and observing that they all pass, students should suspect that the bug is elsewhere.

Synthesize
Does is-safe-left work correctly? How do you know?

Does is-safe-right work correctly? How do you know?

"False" doesn’t mean "Wrong"!

A lot of students - especially confident ones - may struggle to come up

with an example where is-safe-left returns false :

Students hate writing the second one!
examples:
is-safe-left (189) is 189 > -50
is-safe-left (-65) is -65 > -50
end

This misconception comes from confusing a statement that is "false"

with a program that is "wrong". In the second example, above, the result

of is-safe-left (-65) is false , because "65 is greater than -50" is a

false statement . Remind your students that you want one example that’s

true, and a second that’s false!

Pyret includes some functionality that makes this more explicit, and can

help resolve the misconception:

By writing the answer first (is-safe-left(-65) is false), it reduces

anxiety about code being "wrong". Students can think of the because as

an explanation of why the answer is false .

examples:
 is-safe-left(89) is true because 89 > -50
 is-safe-left(-65) is false because -65 > -50
end

Protecting Sam on Both Sides

Overview
Students solve a word problem involving compound inequalities, using and to compose the simpler

Boundary-checking functions from the previous lesson.

Launch

Recruit three student volunteers to roleplay the functions is-safe-left , is-safe-right ,

and is-onscreen . Give them 1 minute to read the Contract and code, as written in the

program.

Ask the volunteers what their name, Domain and Range are. Explain that you, the facilitator,

will be providing a coordinate input. The functions is-safe-left and is-safe-right will

respond with either "true" or "false".

The function is-onscreen , however, will call the is-safe-left function! So the student

roleplaying is-onscreen should turn to is-safe-left and give the input to them.

For example:

Facilitator: "is-onscreen 70"

is-onscreen (turns to is-safe-left): "is-safe-left 70"

is-safe-left: "true"

is-onscreen (turns back to facilitator): "true"

Facilitator: "is-onscreen -100"

is-onscreen (turns to is-safe-left): "is-safe-left -100"

is-safe-left: "false"

is-onscreen (turns back to facilitator): "false"

Facilitator: "is-onscreen 900"

is-onscreen (turns to is-safe-left): "is-safe-left 900"

is-safe-left: "true"

is-onscreen (turns back to facilitator): "true"

30 minutes

Hopefully your students will notice that is-safe-right did not participate in this roleplay

scenario at all!

What is the problem with is-onscreen ?

It’s only talking to is-safe-left , it’s not checking with is-safe-right

What should is-onscreen be doing?

It needs to talk to is-safe-left AND is-safe-right

Investigate
Complete Word Problem: is-onscreen.

When this function is entered into the editor, students should now see that Sam is

protected on both sides of the screen.

Synthesize
Bring back the three new student volunteers to roleplay those functions, with the onscreen function

now working properly. Make sure students provide correct answers, testing both true and false

conditions using coordinates where Sam is onscreen and offscreen.

How did it feel when you saw Sam hit both walls?

Are there multiple solutions for is-onscreen ?

Is this Top-Down or Bottom-Up design?

Extension Option

What if we wanted to keep Sam safe on the top and bottom edges of the

screen as well? What additional functions would we need? What

functions would need to change? We recommend that students tackling

this challenge define a new function is-onscreen-2 because they will need

their original is-onscreen code in the next section of this lesson.

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities3-sam/pages/onscreen.html

Boundary Detection in the Game

Overview
Students identify common patterns between two-dimensional Boundary detection and detecting

whether a player is onscreen. They apply the same problem-solving and narrow mathematical concept

from the previous lesson to a more general problem.

Launch
Have students open their in-progress game file and click "Run". Invite them to analyze the movement

of the danger and the target

How are the TARGET and DANGER behaving right now?

They move across the screen.

What do we want to change?

We want them to come back after they leave one side of the screen.

What happens to an image’s x-coordinate when it moves off the screen?

An image is entirely off-screen if its x-coordinate is less than -50 and greater than 690.

How can we make the computer understand when an image has moved off the screen?

We can teach the computer to compare the image’s coordinates to a boundary on the

number line, just like we did with Sam the Butterfly!

Investigate

Apply what you learned from Sam the Butterly to fix the is-safe-left , is-safe-right , and

is-onscreen functions in your own code.

Since the screen dimensions for their game are 640x480, just like Sam, they can use their code from

Sam as a starting point.

NOTE Students should NOT add is-safe-top and is-safe-bottom to their game code!

10 minutes

Common Misconceptions
Students will need to test their code with their images to see if the boundaries are correct for

them. Students with large images may need to use slightly wider boundaries, or vice versa for small

images. In some cases, students may have to go back and rescale their images if they are too large

or too small for the game.

Students may be surprised that the same code that "traps Sam" also "resets the DANGER and

TARGET ". It’s critical to explain that these functions do neither of those things! All they do is test if

a coordinate is within a certain range on the x-axis. There is other code (hidden in the teachpack)

that determines what to do if the coordinate is offscreen . The ability to re-use function is one of the

most powerful features of mathematics - and programming!

Synthesize
The same code that "trapped" Sam also "resets" the DANGER and the TARGET . What is actually

going on?

Additional Exercises
Onscreen - More than One Way

Keeping NinjaCat in the Game

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities3-sam/pages/onscreen-discussion.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities3-sam/pages/keeping-ninjacat-in-the-game.html

