
Contracts

(Also available in Pyret)

Students learn how to apply Functions in the programming environment and interpret the

information contained in Contracts: Name, Domain and Range. Image-producing functions provide an

engaging context for this exploration.

Lesson Goals Students will be able to:

Name and explain the three parts of a Contract

Use Contracts to apply functions that produce Numbers, Strings, and

Images

Demonstrate understanding of Domain and Range and how they relate to

Functions

Student-facing

Lesson Goals

Let’s write code to make images!

Let’s learn to identify the Domain and Range of a function.

Let’s use Contracts to apply functions.

Prerequisites Simple Data Types

Materials PDF of all Handouts and Page

Lesson Slides

Printable Lesson Plan (a PDF of this web page)

Supplemental

Materials

Additional Printable Pages for Scaffolding and Practice

Matching Images to Code (Desmos)

Key Points For

The Facilitator

Check frequently for understanding of data types and contracts during this

lesson and throughout subsequent lessons.

Glossary

argument :: the inputs to a function; the expressions for each argument follow the function name

contract :: a statement of the name, domain, and range of a function

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts/index.shtml
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/simple-data-types-wescheme/index.shtml?pathway=false
javascript:downloadLessonPDFs(false)
https://docs.google.com/presentation/d/16dJYofjZNoSzHOhOgf1luU-Ji_Tf63O7T2YO-7r6hRg/
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts-wescheme/index.pdf
javascript:downloadLessonPDFs(true)
https://teacher.desmos.com/activitybuilder/custom/5fecf203a29e040d182be6c6?collections=5fbecc2b40d7aa0d844956f0

contract error :: errors where the code makes sense, but uses a function with the wrong number or

type of arguments

data type :: a way of classifying values, such as: Number, String, Image, Boolean, or any user-defined

data structure

domain :: the type or set of inputs a function expects, i.e., the independent variable(s) that govern the

output of the function

function :: a relation from a set of inputs to a set of possible outputs, where each input is related to

exactly one output

range :: the type or set of outputs that a function produces, i.e., the dependent variable(s)

syntax error :: errors where the computer cannot make sense of the code (e.g. - missing commas,

missing parentheses, unclosed strings)

Applying Functions

Overview
Students learn how to apply functions in WeScheme, reinforcing concepts from standard Algebra, and

practice reading error messages to diagnose errors in code.

Launch
In human languages, verbs do things to nouns . For example, I can " throw a ball", or " eat a sandwich".

"Throw" and "Eat" are verbs, and "ball" and "sandwich" are nouns.

In programming languages, values are like nouns. You’ve learned about values in our programming

language, like Numbers (42 , -8.3 , etc), Strings ("hello!"), and Booleans (true and false). In

programming, our verbs are called functions. A function is like a machine, and it does three things:

It takes in some values (called arguments)

It does something to those values

It produces a new value

Let’s play with a few functions, to get the hang of it.

Log into WeScheme.

Open the editor and press "Run", then type (sqrt 16) into the Interactions Area and hit

Enter.

What part of this expression is the value ?

16

What is the name of this function?

sqrt

How many arguments are we giving to this function?

1

What is the type of the argument we are giving to sqrt ?

A Number

What did sqrt produce?

4

What type of data did sqrt produce?

10 minutes

https://www.wescheme.org/openEditor

Number

Encourage students to try giving different arguments to sqrt . Does it only work with Numbers? Does

it only take one Number?

Type (string-length "rainbow") into the Interactions Area and hit Enter:

What is the name of this function?

string-length

How many arguments does string-length expect?

1

What type of argument does the function expect?

String

What does the expression evaluate to?

7

What type of data did string-length produce?

Number

Encourage students to try giving different arguments to string-length . Does it only work with

Strings? Does it only take one String? What does it do?

Investigation
Complete the first section of Applying Functions to investigate the triangle function.

Try changing the expression (triangle 50 "solid" "red") to use "outline" for the

second argument. Now try changing colors and sizes!

Now, take a look at some buggy code in the bottom section. Can you spot the mistakes?

Synthesize
Debrief the activity with the class. Be sure to discuss and analyze different error messages

encountered.

What are the types of the arguments triangle was expecting?

A Number and 2 Strings

How does the output relate to the inputs?

The Number determines the size and the Strings determine the style and color.

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts-wescheme/pages/applying-functions.html

What kind of value was produced by that expression?

An Image! New data type!

Contracts

Overview
This activity introduces the notion of Contracts, which are a simple notation for keeping track of the

set of all possible inputs and outputs for a function. They are also closely related to the concept of a

function machine , which is introduced as well. Note: Contracts are based on the same notation found in

Algebra!

Launch
When students typed (triangle 50 "solid" "red") into the editor, they created an example of a

new data type, called an Image .

The triangle function can make lots of different triangles! The size, style and color are all

determined by the specific inputs provided in the code, but, if we don’t provide the function with a

number and two strings to define those parameters, we will get an error message instead of a triangle.

As you can imagine, there are many other functions for making images, each with a different set of

arguments. For each of these functions, we need to keep track of three things:

1. Name — the name of the function, which we type in whenever we want to use it

2. Domain — the type(s) of data we give to the function

3. Range — the type of data the function produces

The Name , Domain and Range are used to write a Contract.

Where else have you heard the word "contract"?

How can you connect that meaning to contracts in programming?

An actor signs a Contract agreeing to perform in a film in exchange for compensation, a

contractor makes an agreement with a homeowner to build or repair something in a set

amount of time for compensation, or a parent agrees to pizza for dinner in exchange for the

child completing their chores. Similarly, a Contract in programming is an agreement between

what the function is given and what it produces.

Contracts tell us a lot about how to use a function. In fact, we can figure out how to use functions we’ve

never seen before, just by looking at the Contract! Most of the time, error messages occur when we’ve

accidentally broken a Contract.

15 minutes

Contracts don’t tell us specific inputs. They tell us the data type of input a function needs. For example,

a Contract wouldn’t say that addition requires "3 and 4". Addition works on more than just those two

inputs! Instead, it would tells us that addition requires "two Numbers". When we use a Contract, we

plug specific numbers or strings into the expression we are coding.

Contracts are general. Expressions are specific.

Let’s take a look at the Name, Domain, and Range of the functions we’ve seen before:

A Sample Contracts Table

Name Domain Range

; + : Number, Number -> Number

; - : Number, Number -> Number

; / : Number, Number -> Number

; * : Number, Number -> Number

; sqr : Number -> Number

; sqrt : Number -> Number

; < : Number, Number -> Boolean

; > : Number, Number -> Boolean

; <= : Number, Number -> Boolean

; >= : Number, Number -> Boolean

; == : Number, Number -> Boolean

; <> : Number, Number -> Boolean

; string=? : String, String -> Boolean

; string-contains? : String, String -> Boolean

; string-length : String -> Number

; triangle : Number, String, String -> Image

What do you Notice?

What do you Wonder?

When the input matches what the function consumes, the function produces the output we

expect.

Optional: Have students make a Domain and Range Frayer model and use the visual organizer to

explain the concepts of Domain and Range in their own words. You might also have students complete

Function and Variable Frayer model.

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts-wescheme/pages/frayer-model.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts-wescheme/pages/frayer-model-2.html

Here is an example of another function. (string-append "sun" "shine")

Type it into the editor.

What is its Contract?

; string-append :: String, String -> String

What do you think string-append does?

It links together two different strings.

Investigate

Complete Practicing Contracts: Domain & Range and Matching Expressions and Contracts to

get some practice working with Contracts.

Synthesize
What is the difference between a value like 17 and a type like Number ?

A value is a specific piece of data, whereas a type is a way of classifying values.

For each expression where a function is given inputs, how many outputs are there?

For each collection of inputs that we give a function there is exactly one output.

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts-wescheme/pages/practicing-contracts.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts-wescheme/pages/matching-expressions.html

Exploring Image Functions

Overview
This activity digs deeper into Contracts. Students explore image functions to take ownership of the

concept and create an artifact they can refer back to. Making images is highly motivating, and

encourages students to get better at both reading error messages and persisting in catching bugs.

Launch
Suppose we had never seen star before. How could we figure out how to use it, using the helpful

error messages?

Type star into the Interactions Area and hit "Enter". What did you get back? What does

that mean?

There is something called "star", and the computer knows it’s a function!

If it’s a function, we know that it will need an open parentheses and at least one input. Try

(star 50)

What error did we get? What hint does it give us about how to use this function?

star has three elements in its Domain

What happens if I don’t give it those things?

We won’t get the star we want, we’ll probably get an error!

If I give star what it needs, what do I get in return?

An Image of the star that matches the arguments

What is the Contract for star?

star : Number String String -> Image

20 minutes

Error Messages

The error messages in this environment are designed to be as student-

friendly as possible. Encourage students to read these messages aloud

to one another, and ask them what they think the error message means .

By explicitly drawing their attention to errors, you will be setting them

up to be more independent in the next activity!

The Contract for square also has Number String String as the Domain and Image as

the Range. Does that mean the functions are the same?

No! The Domain and Range are the same, but the function name is different…​ and that’s

important because the star and square functions do something very different with those

inputs!

Investigate
Today’s lesson will focus on these image-producing functions. If you’re using a printed workbook with

your class, a list of all of the functions used in this course can be found in the back of the book, along

with space to write down a Contract and example or other notes for each of them.

Turn to Contracts for Image-Producing Functions and take the next 10 minutes to

experiment with the functions.

When you’ve got working expressions, record the contracts and the code!

Synthesize
Does having the same Domain and Range mean that two functions do the same things?

No! For instance, square , star , triangle and circle all have the same Domain and Rnage, yet

they make very different images.

A lot of the Domains for shape functions are the same, but some are different. Why did some

shape functions need more inputs than others?

Was it harder to find contracts for some of the functions than others? Why?

What error messages did you see? How did you figure out what to do after seeing an error

message?

Error messages include: too few / too many arguments given, missing parentheses, etc. Reading the

error message and thinking about what the computer is trying to tell me can inform next steps.

Strategies for English Language Learners

MLR 2 - Collect and Display: As students explore, walk the room and

record student language relating to functions, domain, range, contracts,

or what they perceive from error messages. This output can be used for

a concept map, which can be updated and built upon, bridging student

language with disciplinary language while increasing sense-making.

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts-wescheme/pages/image-contracts.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts-wescheme/pages/image-contracts.html

Which input determined the size of the Rhombus? What did the other number determine?

Contracts Help Us Write Code

Overview
Students are given contracts for some more interesting image functions and see how much more

efficient it is to write code when starting with a Contract.

Launch
You just investigated image functions by guessing and checking what the Contract might be and

responding to error messages until the images built. If you’d started with contracts, it would have been

a lot easier!

Investigate
Complete Using Contracts, experimenting with your editor.

Optional: Try Using Contracts (2) for additional practice with contracts.

Once students have discovered how to build a version of each image function that satisfies them, have

them record the example code in their contracts table. Encourage students to explore what aspect of

the image each of the inputs specifies. It may help students to jot down notes about their discoveries.

What kind of triangle did triangle build?

The triangle function draws equilateral triangles

Only one of the inputs was a number. What did that number tell the computer?

The size of the triangle

What other numbers did the computer need to already know in order to build the

triangle function?

All equilateral triangles have three 60 degree angles and 3 equal sides

If we wanted to build an isosceles triangle or a right triangle, what additional information

would the computer need to be given?

A right triangle requires the base (Number) and the height (Number). An isosceles triangle

requires a leg (Number) and an angle (Number).

Now, turn to Triangle Contracts and use the contracts that are provided to write example

expressions.

10 minutes

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts-wescheme/pages/using-contracts.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts-wescheme/pages/using-contracts-cont.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts-wescheme/pages/image-contracts.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts-wescheme/pages/triangle-contracts.html

Optional: If students are ready to dig into more complex triangles, you can also have them work

through Triangle Contracts (SAS & ASA).

Turn to Radial Star and use the provided Contract to help you match the images to the

corresponding expressions.

Contracts that tell us more information about the arguments can be helpful, but are not a focal point

of our work in this course. The Radial Star worksheet is designed to give students a taste of these

more complex contracts. Optional: For more practice with detailed contracts, students can also

complete Star Polygon. Both star-polygon and radial-star generate a wide range of interesting

shapes!

Make sure that all students have added contracts and example codes to Contracts for Image-

Producing Functions so they have something to refer back to.

Common Misconceptions
Students are very likely to randomly experiment, rather than to actually use the Contracts. You should

plan to ask lots of direct questions to make sure students are making this connection, such as:

How many items are in this function’s Domain?

Students as Teachers

It can be empowering for students to develop expertise on a topic and

get to share it with their peers! This section of the lesson could be

reframed as an opportunity for students to become experts in an image-

producing function and teach their classmates about it. For example,

Pair 1 and pair 4 might focus on radial-star , pair 2 and pair 5 might

focus on polygon-star , pair 3 and pair 6 might focus on

regular-polygon , etc. First, each pair would explore their function.

Perhaps each pair could make a poster, starter-file or slide deck about

their function including: the Contract, an explanation of how it works in

their own words, a few images that it can generate illustrating the range

of possibilities with the expressions that generate them. Next, they

might compare their thinking with another pair that focused on the

same Contract. Finally, pairs could be grouped with other pairs who

focused on different functions and teach each other about what they

learned.

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts-wescheme/pages/triangle-contracts-cont.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts-wescheme/pages/radial-star.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts-wescheme/pages/radial-star.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts-wescheme/pages/star-polygon.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts-wescheme/pages/image-contracts.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts-wescheme/pages/image-contracts.html

What is the name of the 1st item in this function’s Domain?

What is the type of the 1st item in this function’s Domain?

What is the type of the Range?

Synthesize
How was it different to code expressions for the shape functions when you started with a

Contract?

For some of you, the word ellipse was new. How would you describe what an ellipse looks like to

someone who has never seen one before?

Why did the Contract for ellipse require two numbers? What happened when the two numbers

were the same?

Diagnosing and fixing errors are skills that students will continue developing throughout this course.

Some of the errors are syntax errors: a missing comma, an unclosed string, etc. All other errors are

contract errors. If you see an error and you know the syntax is right, ask yourself these three questions:

What is the function that is generating that error?

What is the Contract for that function?

Is the function getting what it needs, according to its Domain?

Additional Exercises
Matching Images to Code (Desmos)

https://teacher.desmos.com/activitybuilder/custom/5fecf203a29e040d182be6c6?collections=5fbecc2b40d7aa0d844956f0

