Name:

Student Workbook

Workbook v3.0

Brought to you by the Bootstrap team:

- Emmanuel Schanzer
- Kathi Fisler
- Shriram Krishnamurthi
- Dorai Sitaram
- Joe Politz
- Jennifer Poole
- Ed Campos
- Ben Lerner
- Flannery Denny

Visual Designer: Colleen Murphy
Bootstrap is licensed under a Creative Commons 3.0 Unported License. Based on a work from www.BootstrapWorld.org. Permissions beyond the scope of this license may be available at contact@BootstrapWorld.org.

Starting to Program: Order of Operations \& Contracts

- The Editor is a software program we use to write Code. Our Editor allows us to experiment with Code on the right-hand side, in the Interactions Area. For Code that we want to keep, we can put it on the left-hand side in the Definitions Area. Clicking the "Run" button causes the computer to read and load everything in the Definitions Area and erase anything that was typed into the Interactions Area.
- Our programming language has many types of values:
- Numbers can be integers like 42 , decimals like 0.5 , or even fractions like $1 / 3$. Clicking on a fraction or a decimal will cause it to switch from one to the other.
- Strings are anything in quotes, such as "Programming is fun! ". A Number written in quotes is still a String!
- Our language also has functions you've seen before, such as addition (+), subtraction (-), multiplication (*) and division (/).
- Order of Operations is incredibly important when programming. To help us organize our math into something we can trust, we can diagram a math expression using the Circles of Evaluation. For example, the expression (1-4) $\div(10 \times 7)$ can be diagrammed as shown below.

- To convert a Circle of Evaluation into code, we walk through the circle from outside-in, moving left-to-right. We type an open parenthesis when we start a circle, and a close parenthesis when we end one. Once we're in a circle, we write whatever is on the left of the circle, then the function at the top, and then whatever is on the right. The circle above, for example, would be programmed as (1-4) / (10 * 7).
- Images are pictures that are produced by functions. The circle function, for example, takes a Number as the radius, a String to determine if the circle should be "solid" or "outline", and a String to specify the color. You can see the Circle of Evaluation and the Code below:

- There are a lot of functions in this language! We can make many different shapes, manipulate Strings and Numbers, and a whole lot more. Keeping track of what every function takes in and what it gives back is impossible! To help us remember how to use each function, programmers write down something called a Contract. Contracts include the Name of the function, what it takes in (called the Domain) and what it gives back (called the Range). You have space at the very back of Processing math: 100% ว write all the Contracts for functions that you discover!

Try typing numbers into the Interactions Area, hitting "Enter", and see what you get back! Some ideas:

1. What is the largest number you can enter? The smallest?
2. Can you write decimals? Fractions?
3. After you get back a decimal, try clicking on it. What happens?
4. Can you write negative numbers? Negative fractions?
5. What else can you try?

What do you Notice?
What do you Wonder?

Completing Circles of Evaluation from Arithmetic Expressions (2)

For each expression on the left, finish the Circle of Evaluation on the right by filling in the blanks.

Arithmetic Expression
$4+2-\frac{10}{5}$
1
$7-1+5 \times 8$

2
$\frac{-15}{5+-8}$
3
$(4+9-8) \times 5$

4
$6 \times 4+\frac{9--6}{5}$

5

$$
\frac{20}{6+4}-\frac{5 \times 9}{-12-3}
$$

Challenge Circle of Evaluation

Creating Circles of Evaluation from Arithmetic Expressions (3)

For each math expression on the left, draw its Circle of Evaluation on the right.

4-6-17

1
$25+14-12$

2
$1+15 \times 5$

3

$$
\frac{15}{10+4 \times-2}
$$

4

Processing math: 100\%

Matching Circles of Evaluation and Arithmetic Expressions

Draw a line from each Circle of Evaluation on the left to the corresponding arithmetic expression on the right.
Circle of Evaluation

1

2

3

4

E
$(1-1) \times(1+1)$

Completing Partial Code from Circles of Evaluation

For each Circle of Evaluation on the left, finish the Code on the right by filling in the blanks.

Circle of Evaluation
 Code

\qquad + (6 * \qquad)

1

2

3

4

5

6

\qquad $+$ \qquad) / (\qquad * \qquad)
\qquad
\qquad 1) \qquad 3) \qquad (5
\qquad 3)
\qquad

 -

Translating Circles of Evaluation to Code

Translate the Circles of Evaluation into Code.

1

2

3

4

5
$(1+1)-1$
$(1-1)+1$

Arithmetic Expressions to Circles of Evaluation \& Code

Translate each of the arithmetic expressions below into Circles of Evaluation, then translate them to Code.

Translating Circles of Evaluation to Code-w/Square Roots

Translate each of the arithmetic expressions below into Circles of Evaluation, then translate them to Code.
HINT: The function name is num-sqrt.

Exploring Image Functions

By now you know how to make stars in this programming language. Can you figure out how to make triangles, based on what you know about making stars? Rectangles? What other shapes might we be able to make? When you've discovered code to make a new shape, draw the Circle of Evaluation in the table below, along with a sketch of the shape. Then add the function to your contracts page.

1) Use the space below to draw the Circles of Evaluation for the new functions, and draw a picture of what the function produces.

Circle of Evaluation		Image
star 50 "solid"	produces \rightarrow	
	produces \rightarrow	
	produces \rightarrow	
	produces \rightarrow	
Mystery Functions!		

2) There is a function called regular-polygon with 4 inputs. What do they mean?
3) There is a function called radial-star with 5 inputs. What do they mean?
\qquad
\qquad
4) There is a function called text. Try to figure out how to use it! What do the inputs mean?
\qquad
\qquad

Reading for Domain and Range

As you think about the functions below, remember that you can always type them into your interactions window in the Editor!

1) What is the name of the function being used in:
```
string-length("broccoli") + 8
```

2) What is the domain of the outermost function being used in:
```
scale(2, circle(40, "solid", "blue"))
```

3) What is the domain of the innermost function being used in:
```
scale(2, circle(40, "solid", "blue"))
```

4) How many arguments does the + operator take in:
```
string-length("broccoli") + 8
```

5) What is the range of the function string-length ?
6) Is text a String, a function, or an Image ?
7) Is the range of text a String or an Image ?
8) What is the first argument to the circle function in:
```
scale(2, circle(40, "solid", "blue"))
```


Composing Image Functions

You'll be investigating these functions with your partner:

```
# text :: String, Number, String -> Image
# scale :: Number, Image -> Image
# rotate :: Number, Image -> Image
# flip-horizontal :: Image -> Image
# flip-vertical :: Image -> Image
```

1) Make an image of your name, in big purple letters. Draw the Circle of Evaluation and write the Code that will create this image.
2) Try using the scale function to make your name bigger or smaller. Draw the Circle of Evaluation (hint: use what you wrote above!), then write the Code.
3) In your own words, what does scale do?
4) Try out rotate, flip-horizontal, and flip-vertical. Use the space below to write your Code, then test out your Code in Pyret when you're ready.
5) Draw a Circle of Evaluation and write the Code for a solid, green star, size 50 .

Circle of Evaluation:

Code: \qquad

Using the star described above as the original , draw the Circles of Evaluation and write the Code for each exercise below.
2) A solid, green star, that is triple the size of the original (using scale)

Circle of Evaluation:

Code: \qquad
4) A solid, green star of size 50 that has been rotated 45 degrees counter-clockwise

Circle of Evaluation:

Code: \qquad Code: \qquad

Defining Values and Functions

- We can define values in our program, giving them names that we can refer to later instead of re-typing the same thing over and over. This works the same way it does in math: $x=5+1$
defines the symbol x
to be the number 6
- In our language, we can define value by writing var $x=5+1$. Here are a few value definitions:

```
x = 5 + 1
y = x * 7
food = "Pizza!"
dot = circle(y, "solid", "red")
```

- We can also define new functions in our language, to make it do things it didn't do before! To do this, we use a step-bystep process called the Design Recipe.
- The first step is to write the Contract for the function you want to build. Remember, a Contract must include the Name, Domain and Range for the function!
- Then we write a Purpose Statement, which is a short note that tells us what the function should do. Professional programmers work hard to write good purpose statements, so that other people can understand the code they wrote!
- The second step is to write at least two Examples. These are lines of code that show what the function should do for a specific input. Once we see examples of at least two inputs, we can find a pattern and see which parts are changing and which parts aren't.
- Circle the parts that are changing, and label them with a short variable name that explains what they do.
- Finally, the third step is to define the function itself! This is pretty easy after you have some examples to work from:

```
shape1 = triangle(50, "solid", "red")
```

Type the line of Code above into the Definitions Area of a new program, and press "Run".

1) What happens when you enter shape 1 into the Interactions Area?
2) Brainstorm some other values to define. Use the space below to draw any Circles of Evaluation you need and to organize your thoughts.

Ideas: eye-color (a String), age (a Number), fav-shape (an Image)

Defining Values - Practice

1) On the line below, write the Code to define PRIZE-STAR as a pink, outline star of size 65.

Using the PRIZE-STAR definition from above, draw the Circle of Evaluation and write the Code for each of the exercises.
One Circle of Evaluation has been done for you.
2) The outline of a pink star that is 3 times the size of the original (using scale)

Circle of Evaluation:

Code: \qquad
4) The outline of a pink star of size 65 that has been rotated 45 degrees

Circle of Evaluation:

Code: \qquad

> 3) The outline of a pink star that is half the size of the original (using scale)

Circle of Evaluation:

Code: \qquad
5) The outline of a pink star that is 3 times the size of the original and has been rotated 45 degrees

Circle of Evaluation:

Code: \qquad
6) How does defining values help you as a programmer?

For each of the images below, write the code that would reproduce that image using overlay. The first one has been done for you. (The outermost square is of size 80)

For each of the images below, write the code that would reproduce that image using put-image. The first one has been done for you. (The outermost square is of size 80)

Decomposing Flags

Each of the flags below is shown with their width and height. Identify the shapes that make up each flag. Use the flag's dimensions to estimate the dimensions of the different shapes. Then estimate the x and y coordinates for the point at which the center of each shape should be located on the flag. Hint: The bottom left corner of each flag is at $(0,0)$ and the top right corner is given by the flags dimensions.

Mapping Examples with Circles of Evaluation

If I type...	\rightarrow	It should map to...
EXAMPLE \#1: Circle of Evaluation	\rightarrow	Circle of Evaluation:
gt		triangle
75		$75 \text { "solid" }{ }^{2} \text { "green" }$
Code: gt (75)		Code: triangle(75, "solid", "green")
EXAMPLE \#2: Circle of Evaluation		Circle of Evaluation:
	\rightarrow	
Code:		Code:

Fast Functions

There is space below to define four different functions, writing their Contracts, two examples, and the definition itself. The function gt - which makes solid green triangles of a given size - is provided as an example. Can you define bc as a function which makes solid blue circles of a given radius?

end

end

\# ::		->
examples:		
() is	
$($) is	
end		
fun) :	

Word Problem: rocket-height

Directions : A rocket blasts off, traveling at 7 meters per second. Use the Design Recipe to write a function rocket-height, which takes in a number of seconds and calculates the height.

Contract and Purpose Statement

Every contract has three parts...

: \qquad -> range
\#
what does the function do?
Examples

Write some examples, then circle and label what changes...
examples:

Write the definition, giving variable names to all your input values...

$$
11
$$

If I type...	\rightarrow	It should map to...	
EXAMPLE \#1: Circle of Evaluation		Circle of Evaluation:	
		\rightarrow	
Code:			

The Design Recipe

Directions: Write a function marquee that takes in a message and returns that message in large gold letters.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:
function name
end
function name

Definition

Write the definition, giving variable names to all your input values...

end
what the function does with those variable(s)

Directions: Write a function circle-area that takes in a radius and uses the fraction approximation of pi (${ }^{\frac{22}{7}}$) to return the area of the circle.

Contract and Purpose Statement
Every contract has three parts..

\qquad -> \qquad
\#
what does the function do?

Examples

Write some examples, then circle and label what changes...
examples:

Definition

Write the definition, giving variable names to all your input values...

The Design Recipe

Directions: Write a function minimum-wage, that takes in a number of hours worked and returns the amount a worker will get paid at $\$ 10.25 / \mathrm{hr}$.

Contract and Purpose Statement

Every contract has three parts...

Directions: Write a function tip-calculator that takes in the cost of a meal and returns the 15% tip for that meal.

Every contract has three parts..

\qquad -> \qquad
\#

> what does the function do?

Examples

Write some examples, then circle and label what changes...
examples:
function name
end
function name
Definition

Write the definition, giving variable names to all your input values...

end what the function does with those variable(s)

The Design Recipe

Directions : Getting a gym membership costs $\$ 150$, and then there's a $\$ 45 /$ month fee after that. Write a function globo-gym that takes in a number of months and produces the cost of a membership for that many months.

Contract and Purpose Statement
Every contract has three parts...

\qquad -> \qquad
\# what does the function do?

Examples

Write some examples, then circle and label what changes...
examples:

Definition

Write the definition, giving variable names to all your input values...

\qquad

Directions : The cost of a ride is a starting price of $\$ 2.50$, plus $\$ 1.50 /$ mile. Write a function rideshare , that takes in a number of miles and produces the cost of that right.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:
function name
function name
end

Definition

Write the definition, giving variable names to all your input values...

\qquad
end

The Design Recipe

Directions: Write a function moving that takes in the days and number of miles driven and returns the cost of renting a truck. The truck is $\$ 55$ per day and each driven mile is 15 .

Contract and Purpose Statement

Every contract has three parts...

Write the definition, giving variable names to all your input values...

Directions: Write a function lawn-area that takes in the length and width of a rectangular lawn and returns its area.

Every contract has three parts...
\#

\because \qquad -> \qquad
\#

Examples

Write some examples, then circle and label what changes...
examples:
function name
end
function name
Definition
Write the definition, giving variable names to all your input values...
fun \quad function name \quad variable(s)
end

The Design Recipe

Directions: Write a function rect-perimeter that takes in the length and width of a rectangle and returns the perimeter of that rectangle.

Contract and Purpose Statement
Every contract has three parts...

Directions: Write a function rectprism-vol that takes in the length, width, and height of a rectangular prism and returns the Volume of a rectangular prism.

```
Contract and Purpose Statement
```

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:
function name
function name
end

Definition

Write the definition, giving variable names to all your input values...

The Design Recipe

Directions: Write a function split-tab that takes in a cost and the number of people sharing the bill and splits the cost equally.

Contract and Purpose Statement

Every contract has three parts..

\qquad -> \qquad
\# what does the function do?

Examples

Write some examples, then circle and label what changes...
examples:

Definition

Write the definition, giving variable names to all your input values...

end what the function does with those variable(s)

Directions: Write a function num-cube that takes in a number and returns the cube of that number.

Contract and Purpose Statement

Every contract has three parts..
\#
 :: \qquad -> \qquad
\#
what does the function do?

Examples

Write some examples, then circle and label what changes..
examples:
function name
function name
end
Definition
Write the definition, giving variable names to all your input values...
function name
end

Problem Decomposition

- Sometimes a problem is too complicated to solve all at once. Maybe there are too many variables, or there is just so much information that we can't get a handle on it!
- We can use Problem Decomposition to break those problems down into simpler pieces, and then work with the pieces to solve the whole. There are two strategies we can use for decomposition:
- Top-Down - Start with the "big picture", writing functions or equations that describe the connections between parts of the problem. Then, work on defining those parts.

Bottom-Up - Start with the smaller parts, writing functions or equations that describe the parts we understand. Then, connect those parts together to solve the whole problem.

- You may find that one strategy works better for some types of problems than another, so make sure you're comfortable using either one!

Word Problem: revenue

Directions: Use the Design Recipe to write a function revenue, which takes in the number of glasses sold at $\$ 1.75$ apiece and calculates the total revenue.

Contract and Purpose Statement

Every contract has three parts...

:: \qquad $\xrightarrow[\text { range }]{>}$
\#
what does the function do?
Examples

Write some examples, then circle and label what changes...

examples:

Write the definition, giving variable names to all your input values...

Directions: Use the Design Recipe to write a function cost, which takes in the number of glasses sold and calculates the total cost of materials if each glass costs $\$.30$ to make.

Contract and Purpose Statement

Every contract has three parts...

:: \qquad $\xrightarrow[\text { range }]{ }$
\#
what does the function do?
Examples

Write some examples, then circle and label what changes...

examples:

Write the definition, giving variable names to all your input values...

Word Problem: profit

Directions: Use the Design Recipe to write a function profit that calculates total profit from glasses sold, which is computed by subtracting the total cost from the total revenue.

Contract and Purpose Statement

Every contract has three parts...

: \qquad $\xrightarrow[\text { range }]{ }$
\#
what does the function do?
Examples

Write some examples, then circle and label what changes...
examples:

Write the definition, giving variable names to all your input values..

Permutation and Combination

- What are the odds of guessing someone's 8-digit password? - How many bouquets can we make choosing 4 different flowers from a collection of 10? - If 10 runners enter a road race, how many different ways can they be ranked? - If you pick two cards from a deck and they're both queens, what are the odds that the next card will be a queen?
Each of these questions deals with permutation or combination. Both concepts play a big role in probability and statistics. If you know how many possible outcomes there could be, you can predict what your chances are. This is useful for competitive gaming, conducting surveys, and cybersecurity!
Permutation involves computing the number of different ways the same set of things can be re-arranged. If you have a dozen different doughnuts to choose from, how many different ways are there of arranging six of them?
Combination involves computing the number of different subsets you can make from the same set of things. If you have a dozen doughnuts to choose from, how many different half-dozen choices could you make?

For each of the problems below, (1) figure out whether this involves permutation with or without replacement, then (2) compute the solution.

	Word problem	Replacement?	Solution
1	Mrs. Burke's cell phone has a 6character password. Her son is trying to unlock it to play a game. How many possible passwords does he have to guess?	Yes No	
2	The dentist has 8 different stickers to give away to the next patients A through H. How many different ways could she give them out?	Yes No	
3	Eric Allatta is the head chef at the top restaurant in Santa Fe. His speciality is four-color enchilada platter, with each enchilada covered in a different sauce. How many ways can he order them on the plate?	Yes No	
4	A magician opens a fresh deck of 52 cards, and asks an audience member to pick six of them. He says he'll guess all six - in order. What are the chances he'll guess them correctly?	Yes No	
5	Emma is knitting a hat, and each row of stitching can be a different color. She has three different colors of yarn to choose from, and the hat has 30 rows. How many different designs could she make?	Yes No	

Combinations

For each of the problems below, (1) figure out whether this involves combination with or without replacement, then (2) compute the solution.

| | Word problem | Replacement? | |
| :--- | :--- | :--- | :--- | :--- |
| 1 | A soccer team has 20 players, but
 only 11 are allowed on the field at
 once. How many different groups of
 players can be on the field at one
 time? | Yes No | |
| 2 | A set of pool balls is numbered 1-15.
 How many different ways are there to
 choose six balls? | | |
| 3 | Six friends get together to play video
 games. All the games can only have
 two players, so they decided to pair
 off to make sure everyone gets to play
 everyone else. How many games will
 they have to play? | Yes No | |
| 4 | A set of pool balls is numbered 1-15.
 Seven of them are striped and eight
 are solid colors. How many different
 ways are there to choose 4 balls
 where 2 are striped and 2 are solid? | Yes No | |
| 5 | A pizzaria has a 3-topping special on
 any pizza, for only \$12.99. If they
 have 10 toppings to choose from, how
 many different pizzas can they make? | Yes No | |

Combination or Permutation?

Look at the word problems below. Without solving them , circle whether they are asking for a permutation or a combination?

1	How many ways can the letters in "Kathi" be re-arranged?	Permutation Combination
2	Shriram's favorite football team is lining up to run onto the field. How many different ways can they be ordered?	Permutation Combination
3	Flannery is planning to perform 8 songs at a Cajun music festival, and there are 30 different songs she could play. How many different set lists could she put together?	Permutation Combination
4	How many possible 3-color blends can be made from the seven colors of the rainbow?	Permutation Combination
5	How many 8-letter passwords are there, if no character can be used twice?	Permutation Combination
6	How many different ways are there to set a combination lock?	Permutation Combination
7	If Servane is holding a dozen different cupcakes and wants to give two to her friend, what are the chances that she chooses red velvet and chocolate froster?	Permutation Combination
8	Joy is arranging flowers for a bouqet. The store has 18 different kinds of flowers for her to choose from. If the bouquets each need 10 flowers, how many different bouqets could she make?	Permutation Combination
10	Matthias is making a candy coated in different colors, so that biting into it will "expose the rainbow" (the catchphrase he's chosen). His machine can make any of 8 different colors, but each candy can only be coated four times. How many unique color combinations can you find in these candies?	Permutation Combination

Introduction to Computational Data Science

Many important questions ("What's the best restaurant in town?", "Is this law good for citizens?", etc.) are answered with data . Data Scientists try and answer these questions by writing programs that ask questions about data .

Data of all types can be organized into Tables.

- Every Table has a header row and some number of data rows.
- Quantitative data is numeric and measures an amount, such as a person's height, a score on a test, distance, etc. A list of quantitative data can be ordered from smallest to largest.
- Categorical data is data that specifies qualities, such as sex, eye color, country of origin, etc. Categorical data is not subject to the laws of arithmetic - for example, we cannot take the "average" of a list of colors.

Answering questions with data can take many forms. Here are a few types of questions, each requiring a different kind of analysis:

- Lookup Questions can be answered just by finding the right row and column of a table. (e.g., "How old is Toggle?")
- Compute Questions can be answered by computing over a single row or column. (e.g., "What is the average weight of animals from the shelter?")
- Relate Questions require looking for trends across multiple columns. (e.g., "Do cats tend to be adopted sooner than dogs?")

The Animals Dataset

name	species	sex	age	fixed	legs	pounds	weeks
Sasha	cat	female	1	false	4	6.5	3
Snuffles	rabbit	female	3	true	4	3.5	8
Mittens	cat	female	2	true	4	7.4	1
Sunflower	cat	female	5	true	4	8.1	6
Felix	cat	male	16	true	4	9.2	5
Sheba	cat	female	7	true	4	8.4	6
Billie	snail	hermaphrodite	0.5	false	0	0.1	3
Snowcone	cat	female	2	true	4	6.5	5
Wade	cat	male	1	false	4	3.2	1
Hercules	cat	male	3	false	4	13.4	2
Toggle	dog	female	3	true	4	48	1
Boo-boo	dog	male	11	true	4	123	24
Fritz	dog	male	4	true	4	92	3
Midnight	dog	female	5	false	4	112	4
Rex	dog	male	1	false	4	28.9	9
Gir	dog	male	8	false	4	88	5
Max	dog	male	3	false	4	52.8	8
Nori	dog	female	3	true	4	35.3	1
Mr. Peanutbutter	dog	male	10	false	4	161	6
Lucky	dog	male	3	true	3	45.4	9
Kujo	dog	male	8	false	4	172	30
Buddy	lizard	male	2	false	4	0.3	3
Gila	lizard	female	3	true	4	1.2	4
Bo	dog	male	8	true	4	76.1	10
Nibblet	rabbit	male	6	false	4	4.3	2
Snuggles	tarantula	female	2	false	8	0.1	1
Daisy	dog	female	5	true	4	68	8
Ada	dog	female	2	true	4	32	3
Miaulis	cat	male	7	false	4	8.8	4
Heathcliff	cat	male	1	true	4	2.1	2
Tinkles	cat	female	1	true	4	1.7	3
Maple	dog	female	3	true	4	51.6	4

For each piece of data below, circle whether it is Categorical or Quantitative data.

1	Hair color	categorical	quantitative
2	Age	categorical	quantitative
3	ZIP Code	categorical	quantitative
4	Year	categorical	quantitative
5	Height	categorical	quantitative
6	Sex	categorical	quantitative
7	Street Name	categorical	quantitative

For each question, circle whether it will be answered by Categorical or Quantitative data.

8	We'd like to find out the average price of cars in a lot.	categorical	quantitative
9	We'd like to find out the most popular color for cars.	categorical	quantitative
10	We'd like to find out which puppy is the youngest.	categorical	quantitative
11	We'd like to find out which cats have been fixed.	categorical	quantitative
12	We want to know which people have a ZIP code of 02907.	categorical	quantitative

Questions and Column Descriptions

What questions can you ask about the animals dataset? Come up with at least one Lookup, Compute, Relate or Can't Answer question, and write them as wonders below. (Note: These question types are defined on Page 1.)

What do you NOTICE about this dataset?	What do you WONDER about this dataset?	Question Type	
			Lookup
Compute			
Relate			

1. This dataset is \qquad Animals that came from an animal shelter \qquad , which contains \qquad 32 data
rows.
2. Some of the columns are:
a. \qquad , which contains \qquad data. Some example values are:
\qquad
"cat", "dog", and "rabbit"
b. \qquad , which contains \qquad data. Some example values are:

Introduction to Programming in Pyret

Programming languages involve different datatypes, such as Numbers, Strings, and Booleans.

- Numbers are values like $1,0.4,1 / 3$, and -8261.003 .
- Numbers are usually used for quantitative data and other values are usually used as categorical data.
- In Pyret, any decimal must start with a 0. 0.22 is valid, but . 22 is not.
- Strings are values like "Emma", "Rosanna", "Jen and Ed", or even "08/28/1980".
- In Pyret, all strings must be surrounded in quotation marks.
- Booleans are either true or false.

Operators (like +, - , *, < etc.) work the same way in Pyret that they do in math.

- Operators are written between values, for example: $4+2$.
- In Pyret, operators must always have a space around them. $4+2$ is valid, but $4+2$ is not.
- If an expression has different operators, parentheses must be used to show order of operations. $4+2+6$ and $4+(2 * 6)$ are valid, but $4+2$ * 6 is not.

Applying Functions also works the way it does in math. The function name is first, followed by a list of arguments in parentheses.

- In math this could look like $f(5)$ or $f(g(10,4))$.
- In Pyret this could look like star(50, "solid", "red").
- There are many other Pyret functions, for example num-sqr, num-sqrt, triangle, star, string-repeat, etc.

Functions have contracts, which help explain how a function should be used. Every contract has three parts:

- The Name of the function - literally, what it's called.
- The Domain of the function - what types of values the function consumes, and in what order.
- The Range of the function - what type of value the function produces.

Value Definitions (like $\mathrm{x}=4$, or $\mathrm{y}=9+6$) also work the way they do in math. Every value definition starts with a name, followed by an equals sign, and then an expression. Once a value is defined, it can be referred to by name.

Numbers and Strings

Make sure you've loaded the code.pyret.org editor, and clicked "Run".

1. Try typing 42 into the Interactions Area and hitting "Enter". What happens?
2. Try typing in other Numbers. What happens if you try a decimal like 0.5 ? A fraction like $1 / 3$? Try really big Numbers, and really small ones.
3. String values are always in quotes. Try typing your name (in quotes!). What happens when you hit Enter?
4. Try typing your name with the opening quote, but without the closing quote. What happens? Now try typing it without any quotes.
5. Is 42 the same as " 42 " ? Why or why not? Write your answer below:

Operators

6. Just like math, Pyret has operators like,+- , * and /.Try typing in $4+2$, and then $4+2$ (without the spaces). What can you conclude from this? Write your answer below:
\qquad
\qquad
7. Type in the following expressions, one at a time: $4+2+6,4+2 * 6,4+(2 * 6)$. What do you notice? Write your answer below:
\qquad
\qquad
8. Try typing in 4 + "cat", and then "dog" + "cat". What can you conclude from this? Write your answer below:
\qquad
\qquad

Booleans

Boolean expressions are yes-or-no questions and will always evaluate to either true ("yes") or false ("no"). What will each of the expressions below evaluate to? Write down the result in the blanks provided, and type them into Pyret if you're not sure.

1) $3<=4$		7) "a" > "b"	
2) $3==2$		8) "a" < "b"	
3) $2<4$		9) "a" == "b"	
4) $3<>3$		10) "a" <> "b"	
5) $5>=5$		11) "a" <> "a"	
6) $4>=6$		12) "a" == "a"	

13) In your own words, describe what < does. \qquad
14) In your own words, describe what $>=$ does. \qquad
15) In your own words, describe what <> does. \qquad
16) How many Numbers are there in the entire universe? \qquad
17) How many Strings are there in the entire universe?
18) How many Images are there in the entire universe?
19) How many Booleans are there in the entire universe?

Defining Functions

We can define our own functions, using a technique called the Design Recipe .

- We use the Design Recipe to help us define functions and think through problems clearly.
- The first step is to write a Contract and Purpose Statement for the function, which specify the Name, Domain and Range of the function and give a summary of what it does.
- The second step is to write at least two examples, which show how the function should work for specific inputs. These examples help us see patterns, and we express those patterns by circling and labeling what changes.
- The final step is to define the function, which generalizes our examples.

The Design Recipe

Directions: Define a function called $g t$, which makes solid green triangles of whatever size we want.
Contract and Purpose Statement
Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

Definition

Write the definition, giving variable names to all your input values...

what the function does with those variable(s)
end

Directions: Define a function called bc , which makes solid blue circles of whatever radius we want.

Contract and Purpose Statement

Every contract has three parts...

Definition

Write the definition, giving variable names to all your input values...

end what the function does with those variable(s)

The Design Recipe

Directions: Define a function called sticker, which draws 50px stars in whatever color is input.
Contract and Purpose Statement
Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

Definition

Write the definition, giving variable names to all your input values...

\qquad
end

Directions: Define a function called nametag, which consumes a Row of the animals table and draws their name in purple, 10px letters. (Assume you have rows animalA and animalB defined.)

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

Definition

Write the definition, giving variable names to all your input values...

fun $\left.\frac{\text { nametag }}{\text { function name }} \frac{r}{\text { variable(s) }}\right)$
text $(r[$ "name" $]$,

Applying Functions

Type this line of code into the interactions area and hit "Enter": triangle(50, "solid", "red")

1) What is the name of this function?
2) What did the expression evaluate to?
3) How many arguments does triangle expect?
\qquad
\qquad
\qquad
4) What does the triangle function produce? (Numbers? \qquad
Strings? Booleans?)

Catching Bugs

The following lines of code are all BUGGY! Can you spot the mistake? If you have time, type in the buggy code and see if Pyret agrees with you!
5) triangle(20, "solid" "red")

Can you spot the mistake?

What error message does Pyret return?
6) triangle(20, "solid")

Can you spot the mistake?
What error message does Pyret return?
7) triangle(20, 10, "solid",
"red")

Can you spot the mistake?
What error message does Pyret return?
8) triangle (20, "solid", "red")

Can you spot the mistake?
What error message does Pyret return? \qquad
9) triangle 20, "solid", "red")

Can you spot the mistake? \qquad
What error message does Pyret return? \qquad

Consider the following contract:

```
rotate :: (degree :: Number, img :: Image) -> Image
```

What is the Name of this function?

How many things are in this function's Domain?

What is the type of this function's first argument?

What is the name of this function's second argument?

What is the Range of this function?

Circle the expression below that shows the correct application of this function, based on its contract.

1. rotate (45, 90)
2. rotate(circle(99, "solid", "green"))
3. rotate(25 , rectangle(7, 10 , "outline", "black"))
4. rotate(rectangle(7, 10, "outline", "black"), 25)

Match the contract (left) with the expression described by the function being used (right).
Contract \quad Expression

$$
\text { make-id :: (name :: String, age :: Number) -> Image } 1
$$

5
E phone-bill(55)

Data Displays and Lookups

Data scientists use data visualizations to gain better insights into their data, and to communicate their findings with others. Making a display requires answering three questions:

1. What data is being displayed? This could be "a random sample of 2000 people", "every animal from the shelter", or "students' aged 14-17".
2. What variables are being explored? Are we looking at the species column? The number of kilograms that an animal weighs? Searching for a relationship between a person's income and their height?
3. What display is being used, given the variables being explored? If it's a quantitative variable, we might use a histogram or box plot. If it's categorical, we could use a pie or bar chart. If it's two quantitative variables, we probably want a scatter plot.

When looking up a data Row from a Table, programmers use the row-n method. This method takes a single number as its input, which tells the computer which Row we want. Note: Rows are numbered starting at zero!

For example:

```
animals-table.row-n(0) # access the 1st data row
animals-table.row-n(16) # access the 17th data row
```

When looking up a column from a Row, programmers use square brackets and the name of the column they want.
For example:

```
animals-table.row-n(11)["age"] # look up the age of the animal in the 12st data
row
animals-table.row-n(14)["species"] # look up the species of the animal in the 15th
data row
```

Throughout the rest of the workbook, we will sometimes refer to animalA and animalB.

```
animalA = animals-table.row-n(4)
animalB = animals-table.row-n(13)
```


Pie Charts
 1

Bar Charts
2

Box Plots 4

A 1 column of Quantitative Data

B 2 columns of Quantitative Data

C 1 column of Categorical Data

Data Displays

Fill in the tables below, then write the Pyret code that will make that display. The first column has been filled in for you.

1) A pie-chart showing the species of animals from the shelter.

| Which Rows? | Which Column(s)? | What Display? |
| :--- | :--- | :--- | :--- |
| All the animals | | |
| code: | | |

2) A bar-chart showing the sex of animals from the shelter.

Which Rows?	Which Column(s)?	What Display?
All the animals		

code:
3) A histogram of the number of pounds that animals weigh.

Which Rows?	Which Column(s)?	What Display?
All the animals		
code:		

4) A box-plot of the number of pounds that animals weigh.

| Which Rows? | Which Column(s)? | What Display? |
| :--- | :--- | :--- | :--- |
| All the animals | | |

code:
5) A scatter-plot, using the animals' species as the labels, age as the x-axis, and pounds as the y-axis.

Which Rows?	Which Column(s)?	What Display?
All the animals		

code:
6) A scatterplot, using the animals' name as the labels, pounds as the x-axis, and weeks as the y-axis.

| Which Rows? | Which Column(s)? | What Display? |
| :--- | :--- | :--- | :--- |
| All the animals | | |
| code: | | |

Lookup Questions

The table below represents four pets:

pets-table	sex	age	pounds
name	"female"	3	48
"Toggle"	"male"	4	92
"Fritz"	"female"	6	35.3
"Nori"	"female"	3	51.6
"Maple"			

1) Match each Lookup Question (left) to the code that will give the answer (right).

"How much does Maple weigh?"	1	A	pets-table.row-n(3)
"Which is the last row in the table?	2	B	pets-table.row-n(2) [${ }^{\text {name }}$ "]
"What is Fritz's sex?"	3	C	pets-table.row-n(1)["sex"]
"What's the third animal's name?"	4	D	pets-table.row-n(3) ["age"]
"How much does Nori weigh?"	5	E	pets-table.row-n(3)["pounds"]
"How old is Maple?"	6	F	pets-table.row-n(0)
"What is Toggle's sex?"	7	G	pets-table.row-n(2)["pounds"]
"What is the first row in the table?"	8	H	pets-table.row-n(0)["sex"]

2) Fill in the blanks (left) with code that will produce the value (right).

a.	pets-table.row-n(3)["name"]	"Maple"	
b.	-	"male"	
c.	\square	4	
d.			48
e.			"Nori"

Defining Row Functions \& Using Table Methods

Methods are special functions that are attached to pieces of data. We use them to manipulate Tables.

- In this course, the methods we'll be using are
- row-n - consumes an index (starting with zero!) and produces a row from a table
- order-by - consumes the name of a column and a Boolean value to determine if that table should be sorted by that column in ascending order
- filter - consumes a Boolean-producing function, and produces a table containing only rows for which the function returns true
build-column - consumes the name of a new column, and a function that produces the values in that column for each Row
- Unlike functions, methods can't be used alone. They have a "secret" argument, which is the data they are attached to. They are written as part of that data, separated by a dot. For example:

```
shapes.row-n(2)
```

- Contracts for methods are different from other functions. They include the type of the data as part of their names. For example:

```
<table>.row-n :: (index :: Number) -> Row
```

Make sure you have the "Table Methods Starter File" open on your computer, and click "Run".

1 How many functions are defined here?

2 What are their names?

3 What is the domain of is-dog?

4 What is the range of is-old ?

5 What is the range of lookup-name ?

6 What does is-fixed(animalA) evaluate to?

7 What does lookup-name(animalB) evaluate to?

8 What does is-old(animalA) evaluate to?

9 What does is-dog(animalA) evaluate to?

What does lookup-name do?

What does is-old do?

The Design Recipe

For the word problems below, assume animalA and animalB are defined as the data rows for Felix and Midnight, respectively.
Directions: Define a function called lookup-fixed, which looks up whether or not an animal is fixed.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

Definition

Write the definition, giving variable names to all your input values...


```
    r["fixed"]
                                    what the function does with those variable(s)
end
```

Directions: Define a function called lookup-sex, which consumes a Row of the animals table and looks up the sex of that animal.

```
Contract and Purpose Statement
```

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:
function name
end
function name

Definition

Write the definition, giving variable names to all your input values...

\qquad
end

The Design Recipe

For the word problems below, assume animalA and animalB are defined as the data rows for Felix and Midnight, respectively.
Directions: Define a function called is-cat, which consumes a Row of the animals table and computes whether the animal is a cat.

Contract and Purpose Statement

Every contract has three parts...
\# $\frac{\text { is-cat:: }}{\text { function name }} \boldsymbol{r}::$ Row $)$
\# Consumes an animal, and computes whether the species equals "cat"
what does the function do?
Examples

Write some examples, then circle and label what changes...
examples:

Definition

Write the definition, giving variable names to all your input values...

Directions: Define a function called is-young, which consumes a Row of the animals table and computes whether it is less than four years old.

Contract and Purpose Statement

Every contract has three parts...

Definition

Write the definition, giving variable names to all your input values...

Method Chaining

Method chaining allows us to apply multiple methods with less code.

For example, instead of using multiple definitions, like this:

```
with-labels = animals-table.build-column("labels", nametag)
cats = with-labels.filter(is-cat)
cats.order-by("age", true)
```

We can use method-chaining to write it all on one line, like this:

```
    animals-table.build-column("labels", nametag).filter(is-cat).order-by("age", true)
```

Order Matters! The methods are applied in the order they appear. For example, trying to order a table by a column that hasn't been built will result in an error.

The Design Recipe

For the word problems below, assume you have animalA and animalB defined in your code.
Directions: Define a function called is-dog, which consumes a Row of the animals table and computes whether the animal is a dog.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

Definition
Write the definition, giving variable names to all your input values...


```
    r["species"] == "dog"
                what the function does with those variable(s)
end
```

Directions: Define a function called is-female, which consumes a Row of the animals table and returns true if the animal is female.

```
Contract and Purpose Statement
```

Every contract has three parts...
\qquad
\qquad -> \qquad
\#

> what does the function do?

Examples

Write some examples, then circle and label what changes...
examples:
function name
end
function name

Definition

Write the definition, giving variable names to all your input values...

\qquad

The Design Recipe

For the word problems below, assume you have animalA and animalB defined in your code.
Directions: Define a function called is-old, which consumes a Row of the animals table and computes whether it is more than 12 years old.

Contract and Purpose Statement

Every contract has three parts...

Write the definition, giving variable names to all your input values...

end
Directions: Define a function called name-has-s , which returns true if an animal's name contains the letter "s"
Contract and Purpose Statement
Every contract has three parts...
\# name-has-s::
\# function name variable(s)
Examples

Write some examples, then circle and label what changes...
examples:
function name
end
function name
Definition

Write the definition, giving variable names to all your input values...
fun $\frac{\text { name-has-s }\left(\frac{r}{\text { function name }}\right): ~: ~}{\text { variable(s) }}$
string-contains(r["name"], "s")
end

Chaining Methods

You have the following functions defined below (read them carefully!):

```
fun is-fixed(r): r["fixed"] end
fun is-young(r): r["age"] < 4 end
fun nametag(r): text(r["name"], 20, "red") end
```

The table t below represents four animals from the shelter:

name	sex	age	fixed	pounds
"Toggle"	"female"	3	true	48
"Fritz"	"male"	4	true	92
"Nori"	"female"	6	true	35.3
"Maple"	"female"	3	true	51.6

Match each Pyret expression (left) to the description of what it does (right).

```
t.order-by("age", true)
```

t.filter(is-fixed)
t.build-column("sticker", nametag)
t.filter(is-young)
t.filter(is-young)
.filter(is-fixed)
t.filter(is-young)
.order-by("pounds", false)
t.build-column("label", nametag) .order-by("age", true)
t.order-by("agee", false)

1

2

3

4

5

6

A
Produces a table containing only Toggle and Maple

B
Produces a table of only young, fixed animals

C oldest

D
Produces a table with an extra column, named "sticker"

E
Produces a table containing Maple and Toggle, in that order

F
Produces a table containing the same four animals

G Won't run: will produce an error

Produces a table with an extra "label" H column, sorted youngest-to-oldest

Chaining Methods 2: Order Matters!

You have the following functions defined below (read them carefully!):

```
fun is-female(r): r["sex"] == "female" end
fun kilograms(r): r["pounds"] / 2.2 end
fun is-heavy(r): r["kilos"] > 25 end
```

The table t below represents four animals from the shelter:

name	sex	age	fixed	pounds
"Toggle"	"female"	3	true	48
"Fritz"	"male"	4	true	92
"Nori"	"female"	6	true	35.3
"Maple"	"female"	3	true	51.6

Match each Pyret expression (left) to the description of what it does (right). Note: one description might match multiple expressions!

```
t.order-by("kilos", true)
t.filter(is-female)
    .build-column("kilos", kilograms)
t.build-column("kilos", kilograms)
    .filter(is-heavy)
t.filter(is-heavy)
    .build-column("kilos", kilograms)
t.build-column("kilos", kilograms)
    .filter(is-heavy)
    .order-by("sex", true)
t.build-column("female", is-female)
    .build-column("kilos", kilograms)
    .filter(is-heavy)
```

Produces a table containing Toggle,
A Nori and Maple, with an extra column showing their weight in kilograms

B Produces a table containing Maple, Nori and Toggle (in that order)

Produces a table containing only Fritz,
C with a single extra column called kilos

D Won't run: will produce an error

E with two extra columns

F
Produces a table containing Maple and Fritz

Randomness and Sample Size

Computer Scientists may take samples that are subsets of a data set. If their sample is well chosen, they can use it to test if their code does what it's supposed to do. However, choosing a good sample can be tricky!

Random Samples are a subset of a population in which each member of the subset has an equal chance of being chosen. A random sample is intended to be a representative subset of the population. The larger the random sample, the more closely it will represent the population and the better our inferences about the population will tend to be.

Grouped Samples are a subset of a population in which each member of the subset was chosen for a specific reason. For example, we might want to look at the difference in trends between two groups ("Is the age of a dog a bigger factor in adoption time v. the age of a cat?"). This would require making grouped samples of just the dogs and just the cats.

1) Evaluate the big-animals-table in the Interactions Area. This is the complete population of animals from the shelter! Below is a true statement about that population:

$$
\text { The population is } 47.7 \% \text { fixed and } 52.3 \% \text { unfixed. }
$$

2) How close to these percentages do we get with random samples?

Type each of the following lines into the Interactions Area and hit "Enter".

```
random-rows(big-animals-table, 10)
random-rows(big-animals-table, 40)
```

3) What do you get?
4) What is the contract for random-rows ?
5) What does the random-rows function do?
6) In the Definitions Area, define small-sample and large-sample to be these two random samples.
7) Make a pie-chart for the animals in each sample, showing percentages of fixed and unfixed.

- The percentage of fixed animals in the entire populations is \qquad 47.7\% .
- The percentage of fixed animals in large-sample is \qquad .
- The percentage of fixed animals in large-sample is \qquad .

8) Make a pie-chart for the animals in each sample, showing percentages for each species.

- The percentage of tarantulas in the entire population is \qquad roughly 5\% _.
- The percentage of tarantulas in small-sample is \qquad .
- The percentage of tarantulas in large-sample is \qquad .

9) Click "Run" to direct the computer to generate a different set of random samples of these sizes. Make a new pie-chart for each sample, showing percentages for each species.

- The percentage of tarantulas in the entire population is \qquad .
- The percentage of tarantulas in small-sample is \qquad .
- The percentage of tarantulas in large-sample is \qquad .

10) Which repeated sample gave us a more accurate inference about the whole population? Why?
Crouped Samples riom the Animals Dalaset
Use method chaining to define the grouped samples below, using the helper functions that you've already defined: is-old, is-young, is-cat, is-dog is-female, lookup-fixed, and has-s-name. We've given you the solution for the first sample, to get you started.
[^0]
Displaying Data

Fill in the tables below, then use Pyret to make the following displays. Record the code you used.
The first table has been filled in for you.

1) A bar-chart showing how many puppies are fixed or not.

What Rows?	Which Column(s)?	What Display?
puppies	fixed	bar-chart

code:
bar-chart(puppies, "fixed")
2) A pie-chart showing how many heavy dogs are fixed or not.

| What Rows? | Which Column(s)? | What Display? |
| :--- | :--- | :--- | :--- |
| | | |

code:
3) A histogram of the number of weeks it takes for a random sample of animals to be adopted.

| What Rows? | Which Column(s)? | What Display? |
| :--- | :--- | :--- | :--- |
| | | |
| code: | | |

4) A box-plot of the number of pounds that kittens weigh.

What Rows?		Which Column(s)?	What Display?

code:

5) A scatter-plot of a random sample using name as the labels, age as the x-axis, and weeks as the y-axis.

What Rows?	Which Column(s)?	What Display?

code:

code:

To best understand histograms, it's helpful to contrast them first with bar charts.
Bar charts show the number of rows belonging to a given category. The more rows in each category, the taller the bar.

- Bar charts provide a visual representation of the frequency of values in a categorical column.
- There's no strict numerical way to order these bars, but sometimes there's an order that makes sense. For example, bars for the sales of different t-shirt sizes might be presented in order of smallest to largest shirt.

Histograms show the number of rows that fall within certain intervals, or "bins", on a horizontal axis. The more rows that fall within a particular "bin", the taller the bar.

- Histograms provide a visual representation of the frequencies (or relative frequencies) of values in a quantitative column.
- Quantitative data can always be ordered, so the bars of a histogram always progress from smallest (on the left) to largest (on the right).
- When dealing with histograms, it's important to select a good bin size. If the bins are too small or too large, it is difficult to see the shape of the dataset. Choosing a good bin size can take some trial and error!

The shape of a data set tells us which values are more or less common.

- In a symmetric data set, values are just as likely to occur a certain distance above the mean as below the mean.
- A data set that is skewed left and/or has low outliers has a few values that are unusually low. The histogram for a skewed left dataset has a few data points that are stretched out to the left (lower) end of the x-axis.
- A data set that is skewed right and/or high outliers means there are a few values that are unusually high. The histogram for a skewed right dataset has a few data points that are stretched out to the right (higher) end of the x-axis.
- One way to visualize the difference between a histogram of data that is skewed left or skewed right is to think about the lengths of our toes on our left and right feet. Much like a histogram that is "skewed left", our left feet have smaller toes on the left and a bigger toe on the right. Our right feet have the big toe on the left and smaller toes on the right, more closely resembling the shape of a histogram of "skewed right" data.

The Design Recipe

For the word problems below, assume you have animalA and animalB defined in your code.
Directions: Define a function called kilos, which consumes a Row of the animals table and divides the pounds column by 2.2 to compute the animal's weight in kilograms.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

Definition
Write the definition, giving variable names to all your input values...
fun

\qquad
function name
variable(s)
end what the function does with those variable(s)

Directions: Define a function called smart-dot, which consumes a Row of the animals table and computes the image of a solid red circle using the animal's pounds as the radius.

Contract and Purpose Statement

Every contract has three parts...

Definition

Write the definition, giving variable names to all your input values...

end
end

Summarizing Columns

name	species	age	pounds
"Sasha"	"cat"	1	6.5
"Boo-boo"	"dog"	11	123
"Felix"	"cat"	16	9.2
"Nori"	"dog"	6	35.3
"Wade"	"cat"	1	3.2
"Nibblet"	"rabbit"	6	4.3
"Maple"	"dog"	3	51.6

1 How many cats are there in the table above?

2 How many dogs are there?

3 How many animals weigh between $0-20$ pounds?

4 How many animals weigh between $20-40$ pounds?

5 Are there more animals weighing 40-60 than 60-140 pounds?

The charts below are both based on this table. What is similar about them? What is different?

Suppose we have a data set for a group of 50 adults, showing the number of teeth each person has:

Number of teeth	Count
0	5
22	1
26	1
27	1
28	4
29	3
30	3
32	27

Draw a histogram for the table in the space below. For each row, find which interval (or "bin") on the x-axis represents the right number of teeth. Then fill in the box so that the height of the box is equal to the sum of the counts that fit into that interval. One of the intervals has been completed for you.

Reading Histograms

Students watched 5 videos, and rated them on a scale of 1 to 10 . While the average score for every video is the same (5.5), the shapes of the ratings distributions were very different! Match the summary description (left) with the shape of the histogram of student ratings (right). For each histogram, the x-axis is the score, and the y-axis is the number of students who gave it that score. These axes are intentionally unlabeled - focusing on the shape is what matters here!

Most of the students were fine with
the video, but a couple of them gave it an unusually low rating.

Most of the students were okay with the video, but a couple students gave it an unusually high rating.

Students tended to give the video an average rating, and they weren't likely to stray far from the average.

Students either really liked or really disliked the video.

Reactions to the video were all over the place: high ratings and low ratings and inbetween ratings were all equally
likely.

1

2

3

4

5

A

B

C

D

E

Describe the shape of histograms on the left in complete sentences, using vocabulary like "Skewed Left", "Skewed Right", or "Symmetric".

Describe two histograms made from columns of the animals dataset.

1) Make a histogram, showing the distribution of
pounds for
column in your dataset
animals from the shelter
your subset, e.g., "fixed dogs from the shelter"
2) Make another histogram, showing the distribution of \qquad for
column in your dataset
your subset, e.g., "fixed dogs from the shelter"
3) What do you Notice and Wonder about these two histograms? What shape do they have?

What do you NOTICE? What do you WONDER?

Describe two of the histograms you made from your dataset.

1) I made a histogram, showing the distribution of \qquad for
column in your dataset
your subset, e.g., "fixed dogs from the shelter"
2) I made a histogram, showing the distribution of \qquad for
column in your dataset
your subset, e.g., "fixed dogs from the shelter"
3) In the table below, describe the histograms. Are they symmetric? Do they show left skewness and/or low outliers? ** Do they show Right skewness and/or high outliers?
What do you NOTICE about these displays? What do you WONDER about these displays?

There are three ways to measure the center of a dataset, to summarize a whole column of quantitative data using just one number:

- The mean of a dataset is the average of all the numbers.
- The median of a dataset is a value that is smaller than half the dataset, and larger than the other half. In an ordered list the median will either be the middle number or the average of the two middle numbers.
- The mode(s) of a data set is the value (or values) occurring most often. When all of the values occur equally often, a dataset has no mode.
In a symmetric dataset, values are just as likely to occur a certain distance above the mean as below the mean, and the median and mean are usually close together.

When a dataset is asymmetric, the median is a more decriptive measure of center than the median.

- A dataset with left skew, and/or low outliers, has a few values that are unusually low, pulling the mean below the median.
- A dataset with right skew, and/or high outliers, means there are a few values that are unusually high, pulling the mean above the median.

When a dataset contains a small number of values, the mode may be the most descriptive measure of center.

Data Scientists can also measure the spread of a dataset using a five-number summary :

- The minimum - the lowest value in the dataset
- The first, or "lower" quartile (Q1) - the middle of the lower half of values, which separates the lowest quarter from the next smallest quarter
- The second quartile (Q2) - the middle value, which separates the entire dataset into "top" and "bottom" halves
- The third, or "upper" quartile (Q3) - the middle of the higher half of values which separates the second highest quarter from the highest quarter
- The maximum - the largest value in the dataset

The five-number summary can be used to draw a box plot .

- Each of the four sections of the box plot contains 25% of the data. If the values are distributed evenly across the range, the four sections of the box plot will be equal in width. Uneven distributions will show up as differently-sized sections of a box plot.
- The left whisker extends from the minimum to Q1.
- The box, or interquartile range, extends from Q1 to Q3. It is divided into 2 parts by the median. Each of those parts contains 25% of the data, so the whole box contains the central 50% of the data.
- The right whisker extends from Q3 to the maximum.

The box plot above, for example, tells us that:

- The minimum weight is about 165 pounds. The median weight is about 220 pounds. The maximum weight is about 310 pounds.
- $1 / 4$ of the players weigh roughly between 165 and 195 pounds
- $1 / 4$ of the players weigh roughly between 195 and 220 pounds
- 1/4 of the players weigh roughly between 220 and 235 pounds
- 1/4 of the players weigh roughly between 235 and 310 pounds
- 50% of the players weigh roughly between 165 and 220 pounds
- 50% of the players weigh roughly between 195 and 235 pounds
- 50% of the players weigh roughly between 220 and 310 pounds
- The densest concentration of players' weights is between 220 and 235 pounds.
- Because the widest section of the box plot is between 235 and 310 pounds, we understand that the weights of the heaviest 25% fall across a wider span than the others. 310 may be an outlier, the weights of the players weighing between 235 pounds and 310 pound could be evenly distributed across the range, or all of the players weighing over 235 pounds may weigh around 310 pounds.

Summarizing Columns in the Animals Dataset

Find the measures of center and spread to summarize the \qquad pounds column of the Animals Table. Be sure to add examples to your Contracts page as you work.

Measures of Center

The three measures of center for this column are:

Mean (Average)	Median	Mode(s)	

Since the mean is \qquad compared to the median, this suggests the shape is
[higher/lower/about equal]
[skewed right (or high outliers) / skewed left (or low outliers) / symmetric]

Measures of Spread

My five-number summary is:

Minimum	Q1	Median	Q3	Maximum

Displaying Center and Spread with a Box Plot

Draw a box plot from this summary on the number line below.
Be sure to label the number line with consistent intervals.

From this summary and box plot, I conclude:
\qquad
\qquad
\qquad
\qquad

Interpreting Spread

Consider the following dataset, representing the annual income of ten people.
All numbers represent thousands of dollars (so 14 means "\$14,000"):

```
60, 10, 21, 180, 14, 20, 45, 35, 45, 170
```

1) In the space below, rewrite this dataset in sorted order .
2) In the table below, compute the measures of center for this dataset.

3) On the number line below, draw a box plot for this dataset.

4) The following statements are correct ... but misleading. Write down the reason why.

| Statement | Why it's misleading |
| :--- | :--- | :--- |
| "They're rich! The average
 person makes more than $\$ 70 \mathrm{k}$
 dollars!" | |
| | |
| "It's a middle-income list: the
 most common salary is
 \$45k/yr!" | |

Describe the shape of the box plots below in complete sentences, using vocabulary like "Skewed Left", "Skewed Right", or "Symmetric".

1

2

3

4

5

Shape of My Dataset

Find the measures of center and spread to summarize a column of your dataset.

The column I chose to summarize is \qquad .

Measures of Center

The three measures of center for this column are:

Displaying Center and Spread with a Box Plot

Draw a box plot from this summary on the number line below.
Be sure to label the number line with consistent intervals.

From this summary and box plot, I conclude:
\qquad
\qquad
\qquad
\qquad

Students watched 5 videos, and rated them on a scale of 1 to 10 . For each video, their ratings were used to generate boxplots and histograms. Match the box-plot to the histogram that displays the same data.

1

2
B

3
C

10
4

5
E

Scatter Plots

Scatter Plots can be used to show a relationship between two quantitative columns. Each row in the dataset is represented by a point, with one column providing the x-value and the other providing the y-value. The resulting "point cloud" makes it possible to look for a relationship between those two columns.

- If the points in a scatter plot appear to follow a straight line, it suggests that a linear relationship exists between those two columns. A number called a correlation can be used to summarize this relationship.
- r
is the name of the correlation statistic. The r
- value will always fall between -1 and +1 . The sign tells us whether the correlation is positive or negative. Distance from 0 tells us the strength of the correlation.
- -1 or +1 are the strongest possible negative and possible correlations.
- O means no correlation.
- The correlation is positive if the point cloud slopes up as it goes farther to the right. This means larger y-values tend to go with larger x-values. It is negative if it slopes down as it goes farther to the right.
- If the points are tightly clustered around a line, it is a strong correlation. That means knowing the x-value gives us a pretty good idea of the y-value. If they are loosely scattered it is a weak correlation, and the y-value doesn't depend much on the x-value.
- Points that are far above or below the cloud of points in a scatter plot are called outliers.
- We graphically summarize this relationship by drawing a straight line through the data cloud, so that the vertical distance between the line and all the points taken together is as small as possible. This line is called the line of best fit and allows Processing math: 100% lues based on x-values.
"Smaller animals get adopted faster because they're cuter."
Do you agree? If so, why?
I hypothesize ...

What would you look for in the dataset to see if you are right?

Creating a Scatter Plot

1. For each row in the Sample Table on the left, add a point to the scatter plot on the right. Use the values from the age column for the x-axis, and values from the weeks column for the y-axis.
2. Do you see a pattern? Do the points seem to go up or down as age increases to the right?

- Draw a cloud around all the points, and a line around which the cloud appears to be centered

3. Does the line slope upwards or downwards?
4. Are the points tightly clustered around the line or loosely scattered?

name	species	age	weeks
"Sasha"	"cat"	1	3
"Boo-boo"	"dog"	11	5
"Felix"	"cat"	16	4
"Buddy"	"lizard"	2	24
"Nori"	"dog"	6	9
"Wade"	"cat"	1	2
"Nibblet"	"rabbit"	6	12
"Maple"	"dog"	3	2

Identifying Form, Direction and Strength

Can you identify the Form, Direction, \& Strength of these displays? Note: If the form is non-linear, we shouldn't report direction - a curve may rise and then fall

Form:	Linear	Non-Linear	None
Direction:	Positive	Negative	None
Strength:	Strong	Weak	None

C

Form:	Linear	Non-Linear	None
Direction:	Positive	Negative	None
Strength:	Strong	Weak	None

E

Form:	Linear	Non-Linear	None
Direction:	Positive	Negative	None
Strength:	Strong	Weak	None

B

Form:	Linear	Non-Linear	None
Direction:	Positive	Negative	None
Strength:	Strong	Weak	None

Form:	Linear	Non-Linear	None
Direction:	Positive	Negative	None
Strength:	Strong	Weak	None

Form:	Linear	Non-Linear	None
Direction:	Positive	Negative	None
Strength:	Strong	Weak	None

Identifying Form and r-Values

Can you identify the Form, Direction, and Strength of these displays?
If the form is linear, approximate the r-value to express Direction and Strength.
Reminder: An r-value close to -1 is a strong negative relationship, an r-value close to 0 is weak, and an r-value close to +1 is a strong positive! If the relationship's strength is moderate, the r-value will be closer to -0.5 or +0.5 .

A

Form :
r close to:

C

Form :
rclose to :

E

Form:
r close to:

Form :
r close to :

D

Form :
r close to :

F

Form :
r close to :

1) There may be a correlation between \quad and \quad column \quad column
I think it is a \qquad , strong/weak
\qquad correlation, positive/negative
because
\qquad .

It might be stronger if I looked at
a sample or extension of my data
2) There may be a correlation between \qquad and \qquad -

I think it is a \qquad , \qquad correlation, strong/weak positive/negative
because
\qquad .

It might be stronger if I looked at
\qquad -
a sample or extension of my data
3) There may be a correlation between
I think it is a \quad strong/weak
because
because
\qquad .

It might be stronger if I looked at
\qquad
a sample or extension of my data

Linear Regression is a way of computing the line of best fit , which minimizes the sum of the squares of the vertical distances from the points to the line. Calculating the slope and intercept of this line is a task best left to computing or statistical software.

- Slope provides us with the easiest summary to grasp: it's how much we predict the y-variable (response variable) will increase or decrease for each unit that the x-variable (explanatory variable) increases.
- Correlation is not causation! Correlation only suggests that two column variables are related, but does not tell us if one causes the other. For example, hot days are correlated with people running their air conditioners, but air conditioners do not cause hot days!
- Sample size matters! The number of data values is also relevant. We'd be more convinced of a positive relationship in general between cat age and time to adoption if a correlation of +0.57 were based on 50 cats instead of 5 .

Drawing Predictors

For each of the scatter plots below, draw a predictor line that seems like the best fit. Describe the correlation in terms of Direction and Strength, then estimate the r-value as being close to $-1,-0.5,0,+0.5$, or +1 .

Interpreting Regression Lines \& r-Values

Each description on the left is written about the linear regression findings on the right. Fill in the blanks using the information in the line of best fit and the r-value.

the number of Uber drivers in a city and the number of babies born each year.

The correlation between weeks-of-school-missed and SAT score is

For every additional Marvel Universe movie released each year, the

$$
\begin{aligned}
& y=-3.19 x+12 \\
& r=-0.05
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{y} & =1.65 \mathrm{x}+52 \\
\mathrm{r} & =0.89
\end{aligned}
$$

$$
\begin{aligned}
y & =-15 \cdot 3 x+1150 \\
r & =0.01
\end{aligned}
$$

$$
r=0.01
$$

```
y = 1.6x + 140
r = 0.12
```


Regression Analysis in the Animals Dataset

1) I performed a linear regression on a sample of

2) I performed a linear regression on a sample of

My Dataset is \qquad

1) I performed a linear regression on

[^0]: The code to define that subset
 kittens = animals-table.filter(is-cat).filter(is-young)
 The code to define that subset
 kittens = animals-table.filter(is-cat).filter(is-young)
 young-dogs = animals-table.
 young-dogs animals-table.__
 fixed-cats $=$ animals-table.
 $s-c a t s=$ animals-table.
 old $=$ animals-table.
 fixed $=$ animals-table.
 old-cats $=$ animals-table.
 young-fixed-cats $=$ animals-table.
 fixed-female-dogs $=$ animals-table.
 old-fixed-female-cats = animals-table.

 Subset
 Kittens
 Puppies
 Fixed Cats
 Cats with "s" in their
 name
 Old Dogs
 Fixed Animals
 Old Female Cats
 Fixed Kittens
 Fixed Female Dogs

