Many important questions ("What's the best restaurant in town?", "Is this law good for citizens?", etc.) are answered with data. Data Scientists try and answer these questions by writing programs that ask questions about data.

Data of all types can be organized into Tables.

- Every Table has a header row and some number of data rows.
- Quantitative data is numeric and measures an amount, such as a person's height, a score on a test, distance, etc. A list of quantitative data can be ordered from smallest to largest.
- Categorical data is data that specifies qualities, such as sex, eye color, country of origin, etc. Categorical data is not subject to the laws of arithmetic — for example, we cannot take the "average" of a list of colors.

Answering questions with data can take many forms. Here are a few types of questions, each requiring a different kind of analysis:

- Lookup Questions can be answered just by finding the right row and column of a table. (e.g., "How old is Toggle?")
- Compute Questions can be answered by computing over a single row or column. (e.g., "What is the average weight of animals from the shelter?")
- Relate Questions require looking for trends across multiple columns. (e.g., "Do cats tend to be adopted sooner than dogs?")
<table>
<thead>
<tr>
<th>name</th>
<th>species</th>
<th>sex</th>
<th>age</th>
<th>fixed</th>
<th>legs</th>
<th>pounds</th>
<th>weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sasha</td>
<td>cat</td>
<td>female</td>
<td>1</td>
<td>false</td>
<td>4</td>
<td>6.5</td>
<td>3</td>
</tr>
<tr>
<td>Snuffles</td>
<td>rabbit</td>
<td>female</td>
<td>3</td>
<td>true</td>
<td>4</td>
<td>3.5</td>
<td>8</td>
</tr>
<tr>
<td>Mittens</td>
<td>cat</td>
<td>female</td>
<td>2</td>
<td>true</td>
<td>4</td>
<td>7.4</td>
<td>1</td>
</tr>
<tr>
<td>Sunflower</td>
<td>cat</td>
<td>female</td>
<td>5</td>
<td>true</td>
<td>4</td>
<td>8.1</td>
<td>6</td>
</tr>
<tr>
<td>Felix</td>
<td>cat</td>
<td>male</td>
<td>16</td>
<td>true</td>
<td>4</td>
<td>9.2</td>
<td>5</td>
</tr>
<tr>
<td>Sheba</td>
<td>cat</td>
<td>female</td>
<td>7</td>
<td>true</td>
<td>4</td>
<td>8.4</td>
<td>6</td>
</tr>
<tr>
<td>Billie</td>
<td>snail</td>
<td>hermaphrodite</td>
<td>0.5</td>
<td>false</td>
<td>0</td>
<td>0.1</td>
<td>3</td>
</tr>
<tr>
<td>Snowcone</td>
<td>cat</td>
<td>female</td>
<td>2</td>
<td>true</td>
<td>4</td>
<td>6.5</td>
<td>5</td>
</tr>
<tr>
<td>Wade</td>
<td>cat</td>
<td>male</td>
<td>1</td>
<td>false</td>
<td>4</td>
<td>3.2</td>
<td>1</td>
</tr>
<tr>
<td>Hercules</td>
<td>cat</td>
<td>male</td>
<td>3</td>
<td>false</td>
<td>4</td>
<td>13.4</td>
<td>2</td>
</tr>
<tr>
<td>Toggle</td>
<td>dog</td>
<td>female</td>
<td>3</td>
<td>true</td>
<td>4</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>Boo-boo</td>
<td>dog</td>
<td>male</td>
<td>11</td>
<td>true</td>
<td>4</td>
<td>123</td>
<td>24</td>
</tr>
<tr>
<td>Fritz</td>
<td>dog</td>
<td>male</td>
<td>4</td>
<td>true</td>
<td>4</td>
<td>92</td>
<td>3</td>
</tr>
<tr>
<td>Midnight</td>
<td>dog</td>
<td>female</td>
<td>5</td>
<td>false</td>
<td>4</td>
<td>112</td>
<td>4</td>
</tr>
<tr>
<td>Rex</td>
<td>dog</td>
<td>male</td>
<td>1</td>
<td>false</td>
<td>4</td>
<td>28.9</td>
<td>9</td>
</tr>
<tr>
<td>Gir</td>
<td>dog</td>
<td>male</td>
<td>8</td>
<td>false</td>
<td>4</td>
<td>88</td>
<td>5</td>
</tr>
<tr>
<td>Max</td>
<td>dog</td>
<td>male</td>
<td>3</td>
<td>false</td>
<td>4</td>
<td>52.8</td>
<td>8</td>
</tr>
<tr>
<td>Nori</td>
<td>dog</td>
<td>female</td>
<td>3</td>
<td>true</td>
<td>4</td>
<td>35.3</td>
<td>1</td>
</tr>
<tr>
<td>Mr. Peanutbutter</td>
<td>dog</td>
<td>male</td>
<td>10</td>
<td>false</td>
<td>4</td>
<td>161</td>
<td>6</td>
</tr>
<tr>
<td>Lucky</td>
<td>dog</td>
<td>male</td>
<td>3</td>
<td>true</td>
<td>3</td>
<td>45.4</td>
<td>9</td>
</tr>
<tr>
<td>Kujo</td>
<td>dog</td>
<td>male</td>
<td>8</td>
<td>false</td>
<td>4</td>
<td>172</td>
<td>30</td>
</tr>
<tr>
<td>Buddy</td>
<td>lizard</td>
<td>male</td>
<td>2</td>
<td>false</td>
<td>4</td>
<td>0.3</td>
<td>3</td>
</tr>
<tr>
<td>Gila</td>
<td>lizard</td>
<td>female</td>
<td>3</td>
<td>true</td>
<td>4</td>
<td>1.2</td>
<td>4</td>
</tr>
<tr>
<td>Bo</td>
<td>dog</td>
<td>male</td>
<td>8</td>
<td>true</td>
<td>4</td>
<td>76.1</td>
<td>10</td>
</tr>
<tr>
<td>Nibblet</td>
<td>rabbit</td>
<td>male</td>
<td>6</td>
<td>false</td>
<td>4</td>
<td>4.3</td>
<td>2</td>
</tr>
<tr>
<td>Snuggles</td>
<td>tarantula</td>
<td>female</td>
<td>2</td>
<td>false</td>
<td>8</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>Daisy</td>
<td>dog</td>
<td>female</td>
<td>5</td>
<td>true</td>
<td>4</td>
<td>68</td>
<td>8</td>
</tr>
<tr>
<td>Ada</td>
<td>dog</td>
<td>female</td>
<td>2</td>
<td>true</td>
<td>4</td>
<td>32</td>
<td>3</td>
</tr>
<tr>
<td>Miaulis</td>
<td>cat</td>
<td>male</td>
<td>7</td>
<td>false</td>
<td>4</td>
<td>8.8</td>
<td>4</td>
</tr>
<tr>
<td>Heathcliff</td>
<td>cat</td>
<td>male</td>
<td>1</td>
<td>true</td>
<td>4</td>
<td>2.1</td>
<td>2</td>
</tr>
<tr>
<td>Tinkles</td>
<td>cat</td>
<td>female</td>
<td>1</td>
<td>true</td>
<td>4</td>
<td>1.7</td>
<td>3</td>
</tr>
<tr>
<td>Maple</td>
<td>dog</td>
<td>female</td>
<td>3</td>
<td>true</td>
<td>4</td>
<td>51.6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Categorical or Quantitative?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Hair color</td>
<td>categorical</td>
<td>quantitative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Age</td>
<td>categorical</td>
<td>quantitative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ZIP Code</td>
<td>categorical</td>
<td>quantitative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Year</td>
<td>categorical</td>
<td>quantitative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Height</td>
<td>categorical</td>
<td>quantitative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Sex</td>
<td>categorical</td>
<td>quantitative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Street Name</td>
<td>categorical</td>
<td>quantitative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>For each question, circle whether it will be answered by Categorical or Quantitative data.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>We'd like to find out the average price of cars in a lot.</td>
</tr>
<tr>
<td>9</td>
<td>We'd like to find out the most popular color for cars.</td>
</tr>
<tr>
<td>10</td>
<td>We'd like to find out which puppy is the youngest.</td>
</tr>
<tr>
<td>11</td>
<td>We'd like to find out which cats have been fixed.</td>
</tr>
<tr>
<td>12</td>
<td>We want to know which people have a ZIP code of 02907.</td>
</tr>
<tr>
<td>13</td>
<td>We'd like to sort a list of phone numbers by area code.</td>
</tr>
</tbody>
</table>
Questions and Column Descriptions

What questions can you ask about the animals dataset? Come up with at least one Lookup, Compute, Relate or Can’t Answer question, and write them as wonders below. (Note: These question types are defined on Page 1.)

<table>
<thead>
<tr>
<th>What do you NOTICE about this dataset?</th>
<th>What do you WONDER about this dataset?</th>
<th>Question Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lookup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can’t answer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. This dataset is Animals that came from an animal shelter, which contains 32 data rows.

2. Some of the columns are:

 a. ___________ species ___________, which contains ___________ categorical ___________ data. Some example values are:

 "cat", "dog", and "rabbit"

 .

 b. __, which contains __ data. Some example values are:

Introduction to Programming in Pyret

Programming languages involve different *datatypes*, such as Numbers, Strings, and Booleans.

- Numbers are values like 1, 0.4, 1/3, and -8261.003.
 - Numbers are *usually* used for quantitative data and other values are *usually* used as categorical data.
 - In Pyret, any decimal *must* start with a 0. 0.22 is valid, but .22 is not.

- Strings are values like "Emma", "Rosanna", "Jen and Ed", or even "08/28/1980".
 - In Pyret, all strings *must* be surrounded in quotation marks.

- Booleans are either true or false.

Operators (like +, -, *, <, etc.) work the same way in Pyret that they do in math.

- Operators are written between values, for example: 4 + 2.
- In Pyret, operators must always have a space around them. 4 + 2 is valid, but 4+2 is not.
- If an expression has different operators, parentheses must be used to show order of operations. 4 + 2 + 6 and 4 + (2 * 6) are valid, but 4 + 2 * 6 is not.

Applying Functions also works the way it does in math. The function name is first, followed by a list of arguments in parentheses.

- In math this could look like \(f(5) \) or \(f(g(10, 4)) \).
- In Pyret this could look like `star(50, "solid", "red")`.
- There are many other Pyret functions, for example `num-sqr`, `num-sqrt`, `triangle`, `star`, `string-repeat`, etc.

Functions have contracts, which help explain how a function should be used. Every contract has three parts:

- The *Name* of the function - literally, what it’s called.
- The *Domain* of the function - what *types of values* the function consumes, and in what order.
- The *Range* of the function - what *type of value* the function produces.

Value Definitions (like \(x = 4 \), or \(y = 9 + 6 \)) also work the way they do in math. Every value definition starts with a name, followed by an equals sign, and then an expression. Once a value is defined, it can be referred to by name.
Numbers and Strings

Make sure you've loaded the code.pyret.org editor, and clicked "Run".

1. Try typing 42 into the Interactions Area and hitting "Enter". What happens?

2. Try typing in other Numbers. What happens if you try a decimal like 0.5? A fraction like 1/3? Try really big Numbers, and really small ones.

3. String values are always in quotes. Try typing your name (in quotes!). What happens when you hit Enter?

4. Try typing your name with the opening quote, but without the closing quote. What happens? Now try typing it without any quotes.

5. Is 42 the same as "42"? Why or why not? Write your answer below:

Operators

6. Just like math, Pyret has operators like +, -, *, and / . Try typing in 4 + 2 , and then 4+2 (without the spaces). What can you conclude from this? Write your answer below:

7. Type in the following expressions, one at a time: 4 + 2 + 6 , 4 + 2 * 6 , 4 + (2 * 6) . What do you notice? Write your answer below:

8. Try typing in 4 + "cat" , and then "dog" + "cat" . What can you conclude from this? Write your answer below:
Booleans

Boolean expressions are yes-or-no questions and will always evaluate to either true ("yes") or false ("no"). What will each of the expressions below evaluate to? Write down the result in the blanks provided, and type them into Pyret if you're not sure.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>$3 \leq 4$</td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td>$3 \equiv 2$</td>
<td></td>
</tr>
<tr>
<td>3)</td>
<td>$2 < 4$</td>
<td></td>
</tr>
<tr>
<td>4)</td>
<td>$3 \neq 3$</td>
<td></td>
</tr>
<tr>
<td>5)</td>
<td>$5 \geq 5$</td>
<td></td>
</tr>
<tr>
<td>6)</td>
<td>$4 \geq 6$</td>
<td></td>
</tr>
<tr>
<td>7)</td>
<td>"a" > "b"</td>
<td></td>
</tr>
<tr>
<td>8)</td>
<td>"a" < "b"</td>
<td></td>
</tr>
<tr>
<td>9)</td>
<td>"a" == "b"</td>
<td></td>
</tr>
<tr>
<td>10)</td>
<td>"a" <> "b"</td>
<td></td>
</tr>
<tr>
<td>11)</td>
<td>"a" <> "a"</td>
<td></td>
</tr>
<tr>
<td>12)</td>
<td>"a" == "a"</td>
<td></td>
</tr>
</tbody>
</table>

13) In your own words, describe what $<$ does.

14) In your own words, describe what \geq does.

15) In your own words, describe what \neq does.

16) How many Numbers are there in the entire universe?

17) How many Strings are there in the entire universe?

18) How many Images are there in the entire universe?

19) How many Booleans are there in the entire universe?
Applying Functions

Type this line of code into the interactions area and hit "Enter": \texttt{triangle(50, "solid", "red")}

1) What is the name of this function? \\

2) What did the expression evaluate to? \\

3) How many arguments does \texttt{triangle} expect? \\

4) What does the \texttt{triangle} function produce? (Numbers? Strings? Booleans?)

Catching Bugs

The following lines of code are all BUGGY! Can you spot the mistake? If you have time, type in the buggy code and see if Pyret agrees with you!

5) \texttt{triangle(20, "solid" "red")}

Can you spot the mistake? \\

What error message does Pyret return? \\

6) \texttt{triangle(20, "solid")}

Can you spot the mistake? \\

What error message does Pyret return? \\

7) \texttt{triangle(20, 10, "solid", "red")}

Can you spot the mistake? \\

What error message does Pyret return? \\

8) \texttt{triangle (20, "solid", "red")}

Can you spot the mistake? \\

What error message does Pyret return? \\

9) \texttt{triangle 20, "solid", "red")}

Can you spot the mistake? \\

What error message does Pyret return?
Consider the following contract:

\[
\text{rotate :: (degree :: Number, img :: Image) -> Image}
\]

What is the Name of this function?

How many things are in this function’s Domain?

What is the type of this function’s first argument?

What is the name of this function’s second argument?

What is the Range of this function?

Circle the expression below that shows the correct application of this function, based on its contract.

1. \text{rotate}(45, 90)
2. \text{rotate}(\text{circle}(99, \text{"solid"}, \text{"green"}))
3. \text{rotate}(25, \text{rectangle}(7, 10, \text{"outline"}, \text{"black"}))
4. \text{rotate}(\text{rectangle}(7, 10, \text{"outline"}, \text{"black"}), 25)
Matching Expressions and Contracts

Match the contract (left) with the expression described by the function being used (right).

<table>
<thead>
<tr>
<th>Contract</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>make-id :: (name :: String, age :: Number) -> Image 1</td>
<td>A make-id("Hannah", "Smith")</td>
</tr>
<tr>
<td>phone-bill :: (minutes :: Number, texts :: Number) -> Number 2</td>
<td>B make-id("George", 17)</td>
</tr>
<tr>
<td>phone-bill :: (minutes :: Number) -> Number 3</td>
<td>C phone-bill(31, 287)</td>
</tr>
<tr>
<td>make-id :: (first :: String, last :: String) -> Image 4</td>
<td>D make-id("Jessica", "Jones", 32)</td>
</tr>
<tr>
<td>make-id :: (first :: String, last :: String, age :: Number) -> Image 5</td>
<td>E phone-bill(55)</td>
</tr>
</tbody>
</table>
Data Scientists use displays to visualize data. You’ve probably seen some of these charts, graphs and plots yourselves! When it comes to displaying Categorical Data, there are two displays that are especially useful.

1. **Bar charts** show the *count or percentage* of rows in each category.
 - Bar charts provide a visual representation of the frequency of values in a categorical column.
 - Bar charts have a bar for every category in a column.
 - The more rows in a category, the taller the bar.
 - Bars in a bar chart can be shown in *any order*, without changing the meaning of the chart. However, bars are usually shown in some sensible order (bars for the number of orders for different t-shirt sizes might be presented in order of smallest to largest shirt).

2. **Pie charts** show the *percentage* of rows in each category.
 - Pie charts provide a visual representation of the relative frequency of values in a categorical column.
 - Pie charts have a slice for every category in a column.
 - The more rows in a category, the larger the slice.
 - Slices in a pie chart can be shown in *any order*, without changing the meaning of the chart. However, slices are usually shown in some sensible order (e.g. slices might be shown in alphabetical order or from the smallest to largest slice).
Exploring Displays

Using your Contracts page and the Animals Starter File, make each type of display below in pyret. Then sketch the displays and answer the questions. Be sure to add examples of the code you use to your contracts page!

<table>
<thead>
<tr>
<th>Pie Charts</th>
<th>Bar Charts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Pie charts are constructed from 1 column(s).</td>
<td>Bar charts are constructed from column(s).</td>
</tr>
<tr>
<td>They show categorical data.</td>
<td>They show data.</td>
</tr>
<tr>
<td>What does this display tell us?</td>
<td>What does this display tell us?</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sketch a box plot here.</td>
<td>Sketch a histogram here.</td>
</tr>
<tr>
<td>Box plots are constructed from column(s).</td>
<td>Histograms are constructed from column(s).</td>
</tr>
<tr>
<td>They show data.</td>
<td>They show data.</td>
</tr>
<tr>
<td>What does this display tell us?</td>
<td>What does this display tell us?</td>
</tr>
</tbody>
</table>
(More) Exploring Displays

For each type of display, fill in the information below.

<table>
<thead>
<tr>
<th>Scatter Plots</th>
<th>Linear Regression Plots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sketch a scatter plot here.</td>
<td>Sketch a LR plot here.</td>
</tr>
<tr>
<td>Scatter plots are constructed from column(s).</td>
<td>LR plots are constructed from column(s).</td>
</tr>
<tr>
<td>They show data.</td>
<td>They show data.</td>
</tr>
<tr>
<td>What does this display tell us?</td>
<td>What does this display tell us?</td>
</tr>
<tr>
<td>__</td>
<td>__</td>
</tr>
</tbody>
</table>
What’s on your mind?

__

__

__

__

__

__

__

__

__
Data scientists use data visualizations to gain better insights into their data, and to communicate their findings with others. Making a display requires answering three questions:

1. **What data** is being displayed? This could be "a random sample of 2000 people", "every animal from the shelter", or "students' aged 14-17".

2. **What variables** are being explored? Are we looking at the *species* column? The number of *kilograms* that an animal weighs? Searching for a relationship between a person's *income* and their *height*?

3. **What display** is being used, given the variables being explored? If it's a quantitative variable, we might use a histogram or box plot. If it's categorical, we could use a pie or bar chart. If it's two quantitative variables, we probably want a scatter plot.

When **looking up a data Row** from a Table, programmers use the `row-n` method. This method takes a single number as its input, which tells the computer which Row we want. *Note: Rows are numbered starting at zero!*

For example:

```plaintext
animals-table.row-n(0)  # access the 1st data row
animals-table.row-n(16) # access the 17th data row
```

When **looking up a column** from a Row, programmers use square brackets and the name of the column they want.

For example:

```plaintext
animals-table.row-n(11)["age"]     # look up the age of the animal in the 12th data row
animals-table.row-n(14)["species"] # look up the species of the animal in the 15th data row
```

Throughout the rest of the workbook, we will sometimes refer to animalA and animalB.

```plaintext
animalA = animals-table.row-n(4)
animalB = animals-table.row-n(13)
```
What Display Goes with Which Data?

Match the Display with the description of the data being plotted. Some descriptions may go with more than one display!

<table>
<thead>
<tr>
<th>Display</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pie Charts</td>
<td>1</td>
<td>A 1 column of Quantitative Data</td>
</tr>
<tr>
<td>Bar Charts</td>
<td>2</td>
<td>B 2 columns of Quantitative Data</td>
</tr>
<tr>
<td>Histograms</td>
<td>3</td>
<td>C 1 column of Categorical Data</td>
</tr>
<tr>
<td>Box Plots</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Scatter Plots</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Data Displays

Fill in the tables below, then write the Pyret code that will make that display. The first column has been filled in for you.

1) A pie-chart showing the species of animals from the shelter.

<table>
<thead>
<tr>
<th>Which Rows?</th>
<th>Which Column(s)?</th>
<th>What Display?</th>
</tr>
</thead>
<tbody>
<tr>
<td>All the animals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

code:

2) A bar-chart showing the sex of animals from the shelter.

<table>
<thead>
<tr>
<th>Which Rows?</th>
<th>Which Column(s)?</th>
<th>What Display?</th>
</tr>
</thead>
<tbody>
<tr>
<td>All the animals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

code:

3) A histogram of the number of pounds that animals weigh.

<table>
<thead>
<tr>
<th>Which Rows?</th>
<th>Which Column(s)?</th>
<th>What Display?</th>
</tr>
</thead>
<tbody>
<tr>
<td>All the animals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

code:

4) A box-plot of the number of pounds that animals weigh.

<table>
<thead>
<tr>
<th>Which Rows?</th>
<th>Which Column(s)?</th>
<th>What Display?</th>
</tr>
</thead>
<tbody>
<tr>
<td>All the animals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

code:

5) A scatter-plot, using the animals’ species as the labels, age as the x-axis, and pounds as the y-axis.

<table>
<thead>
<tr>
<th>Which Rows?</th>
<th>Which Column(s)?</th>
<th>What Display?</th>
</tr>
</thead>
<tbody>
<tr>
<td>All the animals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

code:

6) A scatterplot, using the animals’ name as the labels, pounds as the x-axis, and weeks as the y-axis.

<table>
<thead>
<tr>
<th>Which Rows?</th>
<th>Which Column(s)?</th>
<th>What Display?</th>
</tr>
</thead>
<tbody>
<tr>
<td>All the animals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

code:
The table below represents four pets:

<table>
<thead>
<tr>
<th>name</th>
<th>sex</th>
<th>age</th>
<th>pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Toggle"</td>
<td>"female"</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>"Fritz"</td>
<td>"male"</td>
<td>4</td>
<td>92</td>
</tr>
<tr>
<td>"Nori"</td>
<td>"female"</td>
<td>6</td>
<td>35.3</td>
</tr>
<tr>
<td>"Maple"</td>
<td>"female"</td>
<td>3</td>
<td>51.6</td>
</tr>
</tbody>
</table>

1) Match each Lookup Question (left) to the code that will give the answer (right).

 "How much does Maple weigh?" 1 A pets-table.row-n(3)["pounds"]
 "Which is the last row in the table?" 2 B pets-table.row-n(2)["name"]
 "What is Fritz’s sex?" 3 C pets-table.row-n(1)["sex"]
 "What's the third animal’s name?" 4 D pets-table.row-n(3)["age"]
 "How much does Nori weigh?" 5 E pets-table.row-n(3)["pounds"]
 "How old is Maple?" 6 F pets-table.row-n(0)["age"]
 "What is Toggle’s sex?" 7 G pets-table.row-n(2)["pounds"]
 "What is the first row in the table?" 8 H pets-table.row-n(0)["sex"]

2) Fill in the blanks (left) with code that will produce the value (right).

 a. __________ pets-table.row-n(3)["name"] "Maple"
 b. ______________________ "male"
 c. _______________________ 4
 d. _______________________ 48
 e. ______________________ "Nori"
We can define our own functions, using a technique called the Design Recipe.

- We use the Design Recipe to help us define functions and think through problems clearly.
- The first step is to write a Contract and Purpose Statement for the function, which specify the Name, Domain and Range of the function and give a summary of what it does.
- The second step is to write at least two examples, which show how the function should work for specific inputs. These examples help us see patterns, and we express those patterns by circling and labeling what changes.
- The final step is to define the function, which generalizes our examples.
The Design Recipe

Directions: Define a function called `gt`, which makes solid green triangles of whatever size we want.

Contract and Purpose Statement

Every contract has three parts...

```
# function name     (size :: Number)       -> Image
  function name     domain                range
  # Consumes a size, and produces a solid green triangle of that size.
```  

Examples

Write some examples, then circle and label what changes...

```
examples:
  ( ) is
    function name     input(s)               what the function produces
    ( ) is
    function name     input(s)               what the function produces
  end
```

Definition

Write the definition, giving variable names to all your input values...

```
fun gt(size):  
  function name     variable(s)             
  triangle(size, "solid", "green")         
  what the function does with those variable(s)
end
```

Directions: Define a function called `bc`, which makes solid blue circles of whatever radius we want.

Contract and Purpose Statement

Every contract has three parts...

```
# function name     -> Image
  function name     domain                range
  # what does the function do?
```  

Examples

Write some examples, then circle and label what changes...

```
examples:
  ( ) is
    function name     input(s)               what the function produces
    ( ) is
    function name     input(s)               what the function produces
  end
```

Definition

Write the definition, giving variable names to all your input values...

```
fun bc():  
  function name     variable(s)             
  what the function does with those variable(s)
end
```
The Design Recipe

Directions: Define a function called `sticker`, which draws 50px stars in whatever color is input.

Contract and Purpose Statement

Every contract has three parts...

<table>
<thead>
<tr>
<th>function name</th>
<th>domain</th>
<th>range</th>
</tr>
</thead>
</table>

| function name | input(s) | what the function produces |

| function name | input(s) | what the function produces |

Examples

Write some examples, then circle and label what changes...

examples:

| function name | input(s) | what the function produces |

Definition

Write the definition, giving variable names to all your input values...

fun

| function name | variable(s) | what the function does with those variable(s) |

Directions: Define a function called `nametag`, which consumes a `Row` of the animals table and draws their name in purple, 10px letters. (Assume you have rows `animalA` and `animalB` defined.)

Contract and Purpose Statement

Every contract has three parts...

<table>
<thead>
<tr>
<th>function name</th>
<th>domain</th>
<th>range</th>
</tr>
</thead>
</table>

| function name | input(s) | what the function produces |

| function name | input(s) | what the function produces |

Examples

Write some examples, then circle and label what changes...

examples:

| function name | input(s) | what the function produces |

Definition

Write the definition, giving variable names to all your input values...

fun `nametag`:

| function name | variable(s) | what the function does with those variable(s) |

`text(r["name"], 10, "purple")`
Methods are special functions that are attached to pieces of data. We use them to manipulate Tables.

- In this course, the methods we'll be using are
 - `row-n` - consumes an index (starting with zero!) and produces a row from a table
 - `order-by` - consumes the name of a column and a Boolean value to determine if that table should be sorted by that column in ascending order
 - `filter` - consumes a `Boolean-producing function`, and produces a table containing only rows for which the function returns `true`
 - `build-column` - consumes the name of a new column, and a function that produces the values in that column for each Row

- Unlike functions, methods can't be used alone. They have a "secret" argument, which is the data they are attached to. They are written as part of that data, separated by a dot. For example:
 - `shapes.row-n(2)`

- Contracts for methods are different from other functions. They include the type of the data as part of their names. For example:
 - `<table>.row-n :: (index :: Number) -> Row`
Reading Function Definitions

Make sure you have the "Table Methods Starter File" open on your computer, and click "Run".

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>How many functions are defined here?</td>
</tr>
<tr>
<td>2</td>
<td>What are their names?</td>
</tr>
<tr>
<td>3</td>
<td>What is the domain of <code>is-dog</code>?</td>
</tr>
<tr>
<td>4</td>
<td>What is the range of <code>is-old</code>?</td>
</tr>
<tr>
<td>5</td>
<td>What is the range of <code>lookup-name</code>?</td>
</tr>
<tr>
<td>6</td>
<td>What does <code>is-fixed(animalA)</code> evaluate to?</td>
</tr>
<tr>
<td>7</td>
<td>What does <code>lookup-name(animalB)</code> evaluate to?</td>
</tr>
<tr>
<td>8</td>
<td>What does <code>is-old(animalA)</code> evaluate to?</td>
</tr>
<tr>
<td>9</td>
<td>What does <code>is-dog(animalA)</code> evaluate to?</td>
</tr>
<tr>
<td>10</td>
<td>What does <code>is-fixed</code> do?</td>
</tr>
<tr>
<td>11</td>
<td>What does <code>lookup-name</code> do?</td>
</tr>
<tr>
<td>12</td>
<td>What does <code>is-old</code> do?</td>
</tr>
</tbody>
</table>
The Design Recipe

For the word problems below, assume \(\text{animalA} \) and \(\text{animalB} \) are defined as the data rows for Felix and Midnight, respectively.

Directions: Define a function called \(\text{lookup-fixed} \), which looks up whether or not an animal is fixed.

Contract and Purpose Statement

Every contract has three parts...

\[
\# \text{ lookup-fixed :: } (r :: \text{Row}) \rightarrow \text{Boolean}
\]

Consumes an animal, and looks up the value in the fixed column.

Examples

Write some examples, then circle and label what changes...

\[
\begin{align*}
\text{examples:} & \\
\text{ (} & \text{ is } \\
\text{) } & \text{ (} \text{ is } \\
\text{ end}
\end{align*}
\]

Definition

Write the definition, giving variable names to all your input values...

\[
\text{fun } \text{lookup-fixed}(r) :=
\]

\[
\text{ what the function does with those variable(s) }
\]

Directions: Define a function called \(\text{lookup-sex} \), which consumes a Row of the animals table and looks up the sex of that animal.

Contract and Purpose Statement

Every contract has three parts...

\[
\# :: \rightarrow
\]

Consumes a Row of the animals table and looks up the sex of that animal.

Examples

Write some examples, then circle and label what changes...

\[
\begin{align*}
\text{examples:} & \\
\text{ (} & \text{ is } \\
\text{) } & \text{ (} \text{ is } \\
\text{ end}
\end{align*}
\]

Definition

Write the definition, giving variable names to all your input values...

\[
\text{fun } \text{lookup-sex}(r) :=
\]

\[
\text{ what the function does with those variable(s) }
\]
For the word problems below, assume `animalA` and `animalB` are defined as the data rows for Felix and Midnight, respectively.

Directions: Define a function called `is-cat`, which consumes a `Row` of the animals table and computes whether the animal is a cat.

Contract and Purpose Statement

Every contract has three parts...

```
# is-cat :: ( r :: Row ) -> Boolean
```

Consumes an animal, and computes whether the species equals "cat"

Examples

Write some examples, then circle and label what changes...

examples:

```
is-cat ( animalA ) is

is-cat ( animalB ) is
```

Definition

Write the definition, giving variable names to all your input values...

```
fun is-cat( r ):
    r["species"] == "cat"
end
```

Directions: Define a function called `is-young`, which consumes a Row of the animals table and computes whether it is less than four years old.

Contract and Purpose Statement

Every contract has three parts...

```
# is-young :: ( r :: Row ) -> Boolean
```

what does the function do?

Examples

Write some examples, then circle and label what changes...

examples:

```
is-young ( animalA ) is

is-young ( animalB ) is
```

Definition

Write the definition, giving variable names to all your input values...

```
fun is-young( r ):
    r["age"] < 4
end
```
Method chaining allows us to apply multiple methods with less code.

For example, instead of using multiple definitions, like this:

```bash
with-labels = animals-table.build-column("labels", nametag)
cats = with-labels.filter(is-cat)
cats.order-by("age", true)
```

We can use method-chaining to write it all on one line, like this:

```bash
animals-table.build-column("labels", nametag).filter(is-cat).order-by("age", true)
```

Order Matters! The methods are applied in the order they appear. For example, trying to order a table by a column that hasn't been built will result in an error.
For the word problems below, assume you have `animalA` and `animalB` defined in your code.

Directions: Define a function called `is-dog`, which consumes a Row of the animals table and computes whether the animal is a dog.

Contract and Purpose Statement

Every contract has three parts...

```plaintext
# is-dog :: (r :: Row) -> Boolean

# Consumes an animal, and computes whether the species == "dog"
```

Examples

Write some examples, then circle and label what changes...

```plaintext
examples:

```animalA```

```animalB```

### Definition

Write the definition, giving variable names to all your input values...

```plaintext
fun is-dog (r :: Row):

 r["species"] == "dog"

end
```

**Directions**: Define a function called `is-female`, which consumes a Row of the animals table and returns true if the animal is female.

### Contract and Purpose Statement

Every contract has three parts...

```plaintext
is-female :: (r :: Row) -> Boolean

what does the function do?
```

### Examples

Write some examples, then circle and label what changes...

```plaintext
examples:

```animalA```

```animalB```

Definition

Write the definition, giving variable names to all your input values...

```plaintext
fun is-female (r :: Row):

end
```
The Design Recipe

For the word problems below, assume you have animalA and animalB defined in your code.

Directions: Define a function called is_old, which consumes a Row of the animals table and computes whether it is more than 12 years old.

Contract and Purpose Statement

Every contract has three parts...

::

function name domain -> range

#

what does the function do?

Examples

Write some examples, then circle and label what changes...

examples:

__ () is __

function name input(s) what the function produces

__ () is __

function name input(s) what the function produces

end

Definition

Write the definition, giving variable names to all your input values...

fun __ ():

function name variable(s)

what the function does with those variable(s)

end

Directions: Define a function called name-has-s, which returns true if an animal’s name contains the letter "s"

Contract and Purpose Statement

Every contract has three parts...

name-has-s::

function name domain -> range

#

what does the function do?

Examples

Write some examples, then circle and label what changes...

examples:

__ () is __

function name input(s) what the function produces

__ () is __

function name input(s) what the function produces

end

Definition

Write the definition, giving variable names to all your input values...

fun name-has-s(r):

function name variable(s)

string-contains(r["name"], "s")

what the function does with those variable(s)

end
You have the following functions defined below (read them carefully!):

```
fun is-fixed(r): r["fixed"]                 end
fun is-young(r): r["age"] < 4               end
fun nametag(r):  text(r["name"], 20, "red") end
```

The table below represents four animals from the shelter:

<table>
<thead>
<tr>
<th>name</th>
<th>sex</th>
<th>age</th>
<th>fixed</th>
<th>pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Toggle"</td>
<td>"female"</td>
<td>3</td>
<td>true</td>
<td>48</td>
</tr>
<tr>
<td>"Fritz"</td>
<td>"male"</td>
<td>4</td>
<td>true</td>
<td>92</td>
</tr>
<tr>
<td>"Nori"</td>
<td>"female"</td>
<td>6</td>
<td>true</td>
<td>35.3</td>
</tr>
<tr>
<td>"Maple"</td>
<td>"female"</td>
<td>3</td>
<td>true</td>
<td>51.6</td>
</tr>
</tbody>
</table>

Match each Pyret expression (left) to the description of what it does (right).

```
t.order-by("age", true)  
```

1 A Produces a table containing only Toggle and Maple

```
t.filter(is-fixed)
```

2 B Produces a table of only young, fixed animals

```
t.build-column("sticker", nametag)
```

3 C Produces a table, sorted youngest-to-oldest

```
t.filter(is-young)
```

4 D Produces a table with an extra column, named "sticker"

```
t.filter(is-young) .filter(is-fixed)
```

5 E Produces a table containing Maple and Toggle, in that order

```
t.filter(is-young) .order-by("pounds", false)
```

6 F Produces a table containing the same four animals

```
t.build-column("label", nametag) .order-by("age", true)
```

7 G Won't run: will produce an error

```
t.order-by("agee", false)
```

8 H Produces a table with an extra "label" column, sorted youngest-to-oldest
You have the following functions defined below (read them carefully!):

```py
fun is-female(r): r["sex"] == "female" end
fun kilograms(r): r["pounds"] / 2.2 end
fun is-heavy(r): r["kilos"] > 25 end
```

The table below represents four animals from the shelter:

<table>
<thead>
<tr>
<th>name</th>
<th>sex</th>
<th>age</th>
<th>fixed</th>
<th>pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Toggle"</td>
<td>"female"</td>
<td>3</td>
<td>true</td>
<td>48</td>
</tr>
<tr>
<td>"Fritz"</td>
<td>"male"</td>
<td>4</td>
<td>true</td>
<td>92</td>
</tr>
<tr>
<td>"Nori"</td>
<td>"female"</td>
<td>6</td>
<td>true</td>
<td>35.3</td>
</tr>
<tr>
<td>"Maple"</td>
<td>"female"</td>
<td>3</td>
<td>true</td>
<td>51.6</td>
</tr>
</tbody>
</table>

Match each Pyret expression (left) to the description of what it does (right). **Note: one description might match multiple expressions!**

1. `t.order-by("kilos", true)`
 - **A** Produces a table containing Toggle, Nori and Maple, with an extra column showing their weight in kilograms
2. `t.filter(is-female).build-column("kilos", kilograms)`
 - **B** Produces a table containing Maple, Nori and Toggle (in that order)
3. `t.build-column("kilos", kilograms).filter(is-heavy)`
 - **C** Produces a table containing only Fritz, with a single extra column called kilos
4. `t.filter(is-heavy).build-column("kilos", kilograms)`
 - **D** Won’t run: will produce an error
5. `t.build-column("kilos", kilograms).filter(is-heavy).order-by("sex", true)`
 - **E** Produces a table containing only Fritz, with two extra columns
6. `t.build-column("female", is-female).build-column("kilos", kilograms).filter(is-heavy)`
 - **F** Produces a table containing Maple and Fritz
What’s on your mind?

1) Open the Mood Generator starter file, and read through the code you find there. This code contains new programming that you haven't seen yet! Take a moment to list everything you Notice, and then everything you Wonder...

<table>
<thead>
<tr>
<th>Notice</th>
<th>Wonder</th>
</tr>
</thead>
</table>

2) Add another line of code to the definition, so that \texttt{mood("mad")} produces the same emoji as \texttt{mood("angry")}.

3) Add another example to the examples: section for "laughing", using the appropriate emoji. (To bring up the emojis on your computer, type \texttt{Cmd-\textbackslash Ctrl-Space} on a Mac, or \texttt{Windows-Period} on Windows 10)

4) Come up with some new moods, and add them to the code. Make sure you include examples: !

5) In your own words, how do if-expressions work in Pyret? Write your answer below.

__

__

__

__

6) Write down at least 2 ways you could use if-expressions when analyzing the Animals Dataset.

__

__

__

__
Word Problem: species-color

Directions: We want to generate a custom dot for our image-scatter-plot, such that every species gets a unique color. Write a function called `species-color`, which takes in a Row from the animals table and returns a solid, 5px circle using a color you've chosen.

Contract and Purpose Statement

Every contract has three parts...

```
# function name :: domain -> range

# what does the function do?
```

Examples

Write some examples, then circle and label what changes...

```
examples:

function name (input(s)) is what the function produces

end
```

Definition

Write the definition, giving variable names to all your input values...

```
fun (variable(s)) : 

function name variable(s) 

what the function does with those variable(s)

what the function does with those variable(s)

what the function does with those variable(s)

what the function does with those variable(s)

what the function does with those variable(s)

end

end
```
Randomness and Sample Size

Computer Scientists may take samples that are subsets of a data set. If their sample is well chosen, they can use it to test if their code does what it's supposed to do. However, choosing a good sample can be tricky!

Random Samples are a subset of a population in which each member of the subset has an equal chance of being chosen. A random sample is intended to be a representative subset of the population. The larger the random sample, the more closely it will represent the population and the better our inferences about the population will tend to be.

Grouped Samples are a subset of a population in which each member of the subset was chosen for a specific reason. For example, we might want to look at the difference in trends between two groups ("Is the age of a dog a bigger factor in adoption time v. the age of a cat?"). This would require making grouped samples of just the dogs and just the cats.
1) Evaluate the `big-animals-table` in the Interactions Area. This is the complete population of animals from the shelter! Below is a true statement about that population:

| The population is 47.7% fixed and 52.3% unfixed. |

2) How close to these percentages do we get with random samples?
Type each of the following lines into the Interactions Area and hit "Enter".

```
random-rows(big-animals-table, 10)
random-rows(big-animals-table, 40)
```

3) What do you get?

```
____________________________________________________
```

4) What is the contract for `random-rows`?

```
____________________________________________________
```

5) What does the `random-rows` function do?

```
____________________________________________________
```

6) In the Definitions Area, define `small-sample` and `large-sample` to be these two random samples.

7) Make a `pie-chart` for the animals in each sample, showing percentages of fixed and unfixed.
 - The percentage of fixed animals in the entire populations is **47.7%**.
 - The percentage of fixed animals in `large-sample` is ____________.
 - The percentage of fixed animals in `large-sample` is ____________.

8) Make a `pie-chart` for the animals in each sample, showing percentages for each species.
 - The percentage of tarantulas in the entire population is **roughly 5%**.
 - The percentage of tarantulas in `small-sample` is ____________.
 - The percentage of tarantulas in `large-sample` is ____________.

9) Click "Run" to direct the computer to generate a different set of random samples of these sizes. Make a new `pie-chart` for each sample, showing percentages for each species.
 - The percentage of tarantulas in the entire population is **roughly 5%**.
 - The percentage of tarantulas in `small-sample` is ____________.
 - The percentage of tarantulas in `large-sample` is ____________.

10) Which repeated sample gave us a more accurate inference about the whole population? Why?
Use method chaining to define the grouped samples below, using the helper functions that you’ve already defined: `is-old`, `is-young`, `is-cat`, `is-dog`, `is-female`, `lookup-fixed`, and `has-s-name`. We’ve given you the solution for the first sample, to get you started.

<table>
<thead>
<tr>
<th>Subset</th>
<th>The code to define that subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kittens</td>
<td><code>kittens = animals-table.filter(is-cat).filter(is-young)</code></td>
</tr>
<tr>
<td>Puppies</td>
<td><code>young-dogs = animals-table.__</code></td>
</tr>
<tr>
<td>Fixed Cats</td>
<td><code>fixed-cats = animals-table.__</code></td>
</tr>
<tr>
<td>Cats with “s” in their name</td>
<td><code>s-cats = animals-table.__</code></td>
</tr>
<tr>
<td>Old Dogs</td>
<td><code>old = animals-table.__</code></td>
</tr>
<tr>
<td>Fixed Animals</td>
<td><code>fixed = animals-table.___</code></td>
</tr>
<tr>
<td>Old Female Cats</td>
<td><code>old-cats = animals-table.__</code></td>
</tr>
<tr>
<td>Fixed Kittens</td>
<td><code>young-fixed-cats = animals-table._________________________________</code></td>
</tr>
<tr>
<td>Fixed Female Dogs</td>
<td><code>fixed-female-dogs = animals-table.________________________________</code></td>
</tr>
<tr>
<td>Old Fixed Female Cats</td>
<td><code>old-fixed-female-cats = animals-table.______________________________</code></td>
</tr>
</tbody>
</table>
Fill in the tables below, then use Pyret to make the following displays. Record the code you used. The first table has been filled in for you.

1) A bar-chart showing how many puppies are fixed or not.

<table>
<thead>
<tr>
<th>What Rows?</th>
<th>Which Column(s)?</th>
<th>What Display?</th>
</tr>
</thead>
<tbody>
<tr>
<td>puppies</td>
<td>fixed</td>
<td>bar-chart</td>
</tr>
</tbody>
</table>

code:

bar-chart(puppies, "fixed")

2) A pie-chart showing how many heavy dogs are fixed or not.

<table>
<thead>
<tr>
<th>What Rows?</th>
<th>Which Column(s)?</th>
<th>What Display?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

code:

3) A histogram of the number of weeks it takes for a random sample of animals to be adopted.

<table>
<thead>
<tr>
<th>What Rows?</th>
<th>Which Column(s)?</th>
<th>What Display?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

code:

4) A box-plot of the number of pounds that kittens weigh.

<table>
<thead>
<tr>
<th>What Rows?</th>
<th>Which Column(s)?</th>
<th>What Display?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

code:

5) A scatter-plot of a random sample using name as the labels, age as the x-axis, and weeks as the y-axis.

<table>
<thead>
<tr>
<th>What Rows?</th>
<th>Which Column(s)?</th>
<th>What Display?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

code:

6) A scatter-plot of fixed cats, using species as the labels, pounds as the x-axis, and weeks as the y-axis.

<table>
<thead>
<tr>
<th>What Rows?</th>
<th>Which Column(s)?</th>
<th>What Display?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

code:
Choosing Your Dataset

When selecting a dataset to explore, *pick something that matters to you!* You’ll be working with this data for a while, so you don’t want to pick something at random just to get it done.

When choosing a dataset, it’s a good idea to consider a few factors:

1. Is it **interesting**? This should be data you are curious about, that answers questions you’d want to ask. Pick a dataset you’re genuinely interested in, so that you can explore questions that matter to you!

2. Is it **relevant**? Does this data impact you in any way? Are there questions you have about the dataset that mean something to you or someone you know? Pick a dataset that deals with something personally relevant to you!

3. Is it **familiar**? You wouldn’t be able to make samples of the Animals Dataset properly if you didn’t know that some animals are much bigger or longer-lived than others. Pick a dataset you know about, so you can use your expertise to deepen your analysis!
I chose to work with the __________________________ dataset, which contains ________ data rows.

<table>
<thead>
<tr>
<th>What do you NOTICE?</th>
<th>What do you WONDER?</th>
<th>Question Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lookup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can’t answer</td>
</tr>
</tbody>
</table>

Some of the columns are:

1) __________________________, which contains __________________ data. Some example values from this column are:

2) __________________________, which contains __________________ data. Some example values from this column are:

How can we define grouped samples? For a given row \(r \), what function will identify if that row is in the sample?

<table>
<thead>
<tr>
<th>Subset</th>
<th>A function that returns true if a row (r) is in the subset</th>
</tr>
</thead>
</table>
| | \[
fun \text{________________________}(r):
end
\] |
The Design Recipe

Write helper functions for your dataset, which you can use to define subsets.

Directions: Define a function called ______________________________, which consumes a Row of the table and produces __________________________.

Contract and Purpose Statement
Every contract has three parts...

:: Row -> Boolean

what does the function do?

Examples
Write some examples, then circle and label what changes...

eamples:

function name (input(s)) is what the function produces

end

Definition
Write the definition, giving variable names to all your input values...

fun __________ (______):

function name variable(s)

what the function does with those variable(s)

end

Directions: Define a function called ______________________________, which consumes a Row of the table and produces __________________________.

Contract and Purpose Statement
Every contract has three parts...

:: Row -> Boolean

what does the function do?

Examples
Write some examples, then circle and label what changes...

eamples:

function name (input(s)) is what the function produces

end

Definition
Write the definition, giving variable names to all your input values...

fun __________ (______):

function name variable(s)

what the function does with those variable(s)

end
Write your own word problems below, and solve them using the Design Recipe.

Directions: Define a function called ____________________________, which consumes a Row of the ____________________________ table and produces ____________________________.

Contract and Purpose Statement

Every contract has three parts...

<table>
<thead>
<tr>
<th>#</th>
<th>function name</th>
<th>Row</th>
<th>-></th>
<th>Boolean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>domain</td>
<td></td>
<td></td>
<td>range</td>
</tr>
</tbody>
</table>

- what does the function do?

Examples

Write some examples, then circle and label what changes...

examples:

- (__________) is ____________
- (__________) is ____________

end

Definition

Write the definition, giving variable names to all your input values...

- **fun** (__________):
 - function name
 - variable(s)

 what the function does with those variable(s)

end

Directions: Define a function called ____________________________, which consumes a Row of the ____________________________ table and produces ____________________________.

Contract and Purpose Statement

Every contract has three parts...

<table>
<thead>
<tr>
<th>#</th>
<th>function name</th>
<th>Row</th>
<th>-></th>
<th>Boolean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>domain</td>
<td></td>
<td></td>
<td>range</td>
</tr>
</tbody>
</table>

- what does the function do?

Examples

Write some examples, then circle and label what changes...

examples:

- (__________) is ____________
- (__________) is ____________

end

Definition

Write the definition, giving variable names to all your input values...

- **fun** (__________):
 - function name
 - variable(s)

 what the function does with those variable(s)
To best understand histograms, it’s helpful to contrast them first with bar charts.

Bar charts show the number of rows belonging to a given category. The more rows in each category, the taller the bar.

- **Bar charts provide a visual representation of the frequency of values in a categorical column.**
- There’s no strict numerical way to order these bars, but sometimes there’s an order that makes sense. For example, bars for the sales of different t-shirt sizes might be presented in order of smallest to largest shirt.

Histograms show the number of rows that fall within certain intervals, or “bins”, on a horizontal axis. The more rows that fall within a particular “bin”, the taller the bar.

- **Histograms provide a visual representation of the frequencies (or relative frequencies) of values in a quantitative column.**
- Quantitative data can always be ordered, so the bars of a histogram always progress from smallest (on the left) to largest (on the right).
- When dealing with histograms, it’s important to select a good bin size. If the bins are too small or too large, it is difficult to see the shape of the dataset. Choosing a good bin size can take some trial and error!

The **shape** of a data set tells us which values are more or less common.

- In a symmetric data set, values are just as likely to occur a certain distance above the mean as below the mean.
- A data set that is skewed left and/or has low outliers has a few values that are unusually low. The histogram for a skewed left dataset has a few data points that are stretched out to the left (lower) end of the x-axis.
- A data set that is skewed right and/or high outliers means there are a few values that are unusually high. The histogram for a skewed right dataset has a few data points that are stretched out to the right (higher) end of the x-axis.
- One way to visualize the difference between a histogram of data that is skewed left or skewed right is to think about the lengths of our toes on our left and right feet. Much like a histogram that is “skewed left”, our left feet have smaller toes on the left and a bigger toe on the right. Our right feet have the big toe on the left and smaller toes on the right, more closely resembling the shape of a histogram of “skewed right” data.
For the word problems below, assume you have `animalA` and `animalB` defined in your code.

Directions: Define a function called `kilos`, which consumes a Row of the animals table and divides the pounds column by 2.2 to compute the animal's weight in kilograms.

Contract and Purpose Statement

Every contract has three parts...

```
# function name :: domain   ->   range
```

what does the function do?

Examples

Write some examples, then circle and label what changes...

```
examples:  

(            ) is  
```

function name input(s) what the function produces

```
(            ) is  
```

function name input(s) what the function produces

end

Definition

Write the definition, giving variable names to all your input values...

```
fun (            ):  
```

function name variable(s)

what the function does with those variable(s)

Directions: Define a function called `smart-dot`, which consumes a Row of the animals table and computes the image of a solid red circle using the animal's pounds as the radius.

Contract and Purpose Statement

Every contract has three parts...

```
# function name :: domain   ->   Image
```

what does the function do?

Examples

Write some examples, then circle and label what changes...

```
examples:  

smart-dot ("animalA") is  
```

function name input(s) what the function produces

```
(            ) is  
```

function name input(s) what the function produces

end

Definition

Write the definition, giving variable names to all your input values...

```
fun (            ):  
```

function name variable(s)

what the function does with those variable(s)
Summarizing Columns

<table>
<thead>
<tr>
<th>name</th>
<th>species</th>
<th>age</th>
<th>pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Sasha"</td>
<td>"cat"</td>
<td>1</td>
<td>6.5</td>
</tr>
<tr>
<td>"Boo-boo"</td>
<td>"dog"</td>
<td>11</td>
<td>123</td>
</tr>
<tr>
<td>"Felix"</td>
<td>"cat"</td>
<td>16</td>
<td>9.2</td>
</tr>
<tr>
<td>"Nori"</td>
<td>"dog"</td>
<td>6</td>
<td>35.3</td>
</tr>
<tr>
<td>"Wade"</td>
<td>"cat"</td>
<td>1</td>
<td>3.2</td>
</tr>
<tr>
<td>"Nibblet"</td>
<td>"rabbit"</td>
<td>6</td>
<td>4.3</td>
</tr>
<tr>
<td>"Maple"</td>
<td>"dog"</td>
<td>3</td>
<td>51.6</td>
</tr>
</tbody>
</table>

1. How many cats are there in the table above?
2. How many dogs are there?
3. How many animals weigh between 0-20 pounds?
4. How many animals weigh between 20-40 pounds?
5. Are there more animals weighing 40-60 than 60-140 pounds?

The charts below are both based on this table. What is similar about them? What is different?

<table>
<thead>
<tr>
<th>Similarities</th>
<th>Differences</th>
</tr>
</thead>
</table>

![Bar chart comparing cats, dogs, and rabbits](chart1.png)

![Histogram comparing pounds range](chart2.png)
Suppose we have a data set for a group of 50 adults, showing the number of teeth each person has:

<table>
<thead>
<tr>
<th>Number of teeth</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>31</td>
<td>3</td>
</tr>
<tr>
<td>32</td>
<td>27</td>
</tr>
</tbody>
</table>

Draw a histogram for the table in the space below. For each row, find which interval (or “bin”) on the x-axis represents the right number of teeth. Then fill in the box so that the height of the box is equal to the sum of the counts that fit into that interval. One of the intervals has been completed for you.
Students watched 5 videos, and rated them on a scale of 1 to 10. While the **average score** for every video is the same (5.5), the **shapes** of the ratings distributions were very different! *Match* the summary description (left) with the **shape** of the histogram of student ratings (right). For each histogram, the **x-axis is the score**, and the **y-axis is the number of students who gave it that score**. These axes are intentionally unlabeled - focusing on the **shape** is what matters here!

1. Most of the students were fine with the video, but a couple of them gave it an unusually low rating.

2. Most of the students were okay with the video, but a couple students gave it an unusually high rating.

3. Students tended to give the video an average rating, and they weren’t likely to stray far from the average.

4. Students either really liked or really disliked the video.

5. Reactions to the video were all over the place: high ratings and low ratings and inbetween ratings were all equally likely.
Identifying Shape

Describe the shape of histograms on the left in complete sentences, using vocabulary like "Skewed Left", "Skewed Right", or "Symmetric".
Describe two histograms made from columns of the animals dataset.

1) Make a histogram, showing the distribution of __________ pounds __________ for __________ column in your dataset __________.
 animals from the shelter __________.
 your subset, e.g., "fixed dogs from the shelter"

2) Make another histogram, showing the distribution of __________ column in your dataset __________.
 __________.
 your subset, e.g., "fixed dogs from the shelter"

3) What do you Notice and Wonder about these two histograms? What shape do they have?

<table>
<thead>
<tr>
<th>What do you NOTICE?</th>
<th>What do you WONDER?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Describe two of the histograms you made from your dataset.

1) I made a histogram, showing the distribution of ____________________________ for ____________________________
 column in your dataset

 your subset, e.g., “fixed dogs from the shelter”

2) I made a histogram, showing the distribution of ____________________________ for ____________________________
 column in your dataset

 your subset, e.g., “fixed dogs from the shelter”

3) In the table below, describe the histograms. Are they symmetric? Do they show left skewness and/or low outliers? ** Do they show Right skewness and/or high outliers?

<table>
<thead>
<tr>
<th>What do you NOTICE about these displays?</th>
<th>What do you WONDER about these displays?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Measures of Center and Spread

There are three ways to measure the center of a dataset, to summarize a whole column of quantitative data using just one number:

- The mean of a dataset is the average of all the numbers.
- The median of a dataset is a value that is smaller than half the dataset, and larger than the other half. In an ordered list the median will either be the middle number or the average of the two middle numbers.
- The mode(s) of a dataset is the value (or values) occurring most often. When all of the values occur equally often, a dataset has no mode.

In a symmetric dataset, values are just as likely to occur a certain distance above the mean as below the mean, and the median and mean are usually close together.

When a dataset is asymmetric, the median is a more descriptive measure of center than the median.

- A dataset with left skew, and/or low outliers, has a few values that are unusually low, pulling the mean below the median.
- A dataset with right skew, and/or high outliers, means there are a few values that are unusually high, pulling the mean above the median.

When a dataset contains a small number of values, the mode may be the most descriptive measure of center.

Data Scientists can also measure the spread of a dataset using a five-number summary:

- The minimum – the lowest value in the dataset
- The first, or “lower” quartile (Q1) – the middle of the lower half of values, which separates the lowest quarter from the next smallest quarter
- The second quartile (Q2) – the middle value, which separates the entire dataset into “top” and “bottom” halves
- The third, or “upper” quartile (Q3) – the middle of the higher half of values which separates the second highest quarter from the highest quarter
- The maximum – the largest value in the dataset
The five-number summary can be used to draw a box plot.

- Each of the four sections of the box plot contains 25% of the data. *If the values are distributed evenly across the range, the four sections of the box plot will be equal in width.* Uneven distributions will show up as differently-sized sections of a box plot.

- The left whisker extends from the minimum to Q1.

- The box, or interquartile range, extends from Q1 to Q3. It is divided into 2 parts by the median. Each of those parts contains 25% of the data, so the whole box contains the central 50% of the data.

- The right whisker extends from Q3 to the maximum.

![Box plot diagram]

The box plot above, for example, tells us that:

- The minimum weight is about 165 pounds. The median weight is about 220 pounds. The maximum weight is about 310 pounds.
 - 1/4 of the players weigh roughly between 165 and 195 pounds
 - 1/4 of the players weigh roughly between 195 and 220 pounds
 - 1/4 of the players weigh roughly between 220 and 235 pounds
 - 1/4 of the players weigh roughly between 235 and 310 pounds
 - 50% of the players weigh roughly between 165 and 220 pounds
 - 50% of the players weigh roughly between 195 and 235 pounds
 - 50% of the players weigh roughly between 220 and 310 pounds

- The densest concentration of players' weights is between 220 and 235 pounds.
- Because the widest section of the box plot is between 235 and 310 pounds, we understand that the weights of the heaviest 25% fall across a wider span than the others. 310 may be an outlier, the weights of the players weighing between 235 pounds and 310 pound could be evenly distributed across the range, or all of the players weighing over 235 pounds may weigh around 310 pounds.
Summarizing Columns in the Animals Dataset

Find the measures of center and spread to summarize the ______ pounds ______ column of the Animals Table.

Be sure to add examples to your Contracts page as you work.

Measures of Center

The three measures of center for this column are:

<table>
<thead>
<tr>
<th>Mean (Average)</th>
<th>Median</th>
<th>Mode(s)</th>
</tr>
</thead>
</table>

Since the mean is __________ compared to the median, this suggests the shape is

[higher/lower/about equal]

[skewed right (or high outliers) / skewed left (or low outliers) / symmetric]

Measures of Spread

My five-number summary is:

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Q1</th>
<th>Median</th>
<th>Q3</th>
<th>Maximum</th>
</tr>
</thead>
</table>

Displaying Center and Spread with a Box Plot

Draw a box plot from this summary on the number line below.

Be sure to label the number line with consistent intervals.

From this summary and box plot, I conclude:

__

__

__

__
Consider the following dataset, representing the annual income of ten people. All numbers represent *thousands of dollars* (so 14 means "$14,000"):

60, 10, 21, 180, 14, 20, 45, 35, 45, 170

1) In the space below, rewrite this dataset in **sorted order**.

2) In the table below, compute the **measures of center** for this dataset.

<table>
<thead>
<tr>
<th>Mean (Average)</th>
<th>Median</th>
<th>Mode(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3) In the table below, compute the **five number summary** of this dataset.

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Q1</th>
<th>Q2 (Median)</th>
<th>Q3</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4) On the number line below, draw a **box plot** for this dataset.

5) The following statements are **correct** ... but misleading. Write down the reason why.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Why it's misleading</th>
</tr>
</thead>
<tbody>
<tr>
<td>“They're rich! The average person makes more than $70k dollars!”</td>
<td></td>
</tr>
<tr>
<td>“It's a middle-income list: the most common salary is $45k/yr!”</td>
<td></td>
</tr>
<tr>
<td>“This group is very low-income, the most common salary range is from $10k-$25k!”</td>
<td></td>
</tr>
</tbody>
</table>
Describe the shape of the box plots below in complete sentences, using vocabulary like "Skewed Left", "Skewed Right", or "Symmetric".

1

2

3

4

5
Shape of My Dataset

Find the measures of center and spread to summarize a column of your dataset.

The column I chose to summarize is ____________________________.

Measures of Center

The three measures of center for this column are:

<table>
<thead>
<tr>
<th>Mean (Average)</th>
<th>Median</th>
<th>Mode(s)</th>
</tr>
</thead>
</table>

Since the mean is ______ compared to the median, this suggests the shape is

[higher/lower/about equal]

[skewed right (or high outliers) / skewed left (or low outliers) / symmetric]

Measures of Spread

My five-number summary is:

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Q1</th>
<th>Q2 (Median)</th>
<th>Q3</th>
<th>Maximum</th>
</tr>
</thead>
</table>

Displaying Center and Spread with a Box Plot

Draw a box plot from this summary on the number line below.
Be sure to label the number line with consistent intervals.

From this summary and box plot, I conclude:

__
__
__
__
Students watched 5 videos, and rated them on a scale of 1 to 10. For each video, their ratings were used to generate box-plots and histograms. **Match the box-plot to the histogram that displays the same data.**

1. [Box-plot 1]
2. [Box-plot 2]
3. [Box-plot 3]
4. [Box-plot 4]
5. [Box-plot 5]

A
B
C
D
E
What’s on your mind?
A “helpful” Data Scientist gives you access to the following functions:

```haskell
# fixed-cats :: (animals :: Table) -> Table
# consumes a table of animals, and produces a table containing only
cats that have been fixed, sorted from youngest-to-oldest
```

You can use the function, but you can’t see the code for it! How do you know if you can trust their code?

HINT:
- You could make a verification subset that contains one of every species, and make sure that the function filters out everything but cats.
- You could make sure this subset has multiple cats not already ordered of youngest-to-oldest, and make sure the function puts them in the right order.

1) What other qualities would this subset need to have?

2) Create your verification subset! In the space below, list the name of each animal in your subset.

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
“Trust, but verify…”

A “helpful” Data Scientist gives you access to the following functions:

```haskell
# old-dogs-nametags:: (animals :: Table) -> Table
# consumes a table of animals, and produces a table containing only
# dogs 5 years or older, with an extra column showing their name in red
```

You can use the function, but you can't see the code for it! How do you know if you can trust their code?

1) What qualities would a verification subset need to have?

2) Create your verification subset! In the space below, list the name and index of each animal in your subset.

<table>
<thead>
<tr>
<th>Name</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scatter Plots can be used to show a relationship between two quantitative columns. Each row in the dataset is represented by a point, with one column providing the x-value and the other providing the y-value. The resulting “point cloud” makes it possible to look for a relationship between those two columns.

- If the points in a scatter plot appear to follow a straight line, it suggests that a linear relationship exists between those two columns. A number called a correlation can be used to summarize this relationship.
- r is the name of the correlation statistic. The r-value will always fall between -1 and $+1$. The sign tells us whether the correlation is positive or negative. Distance from 0 tells us the strength of the correlation.
 - -1 or $+1$ are the strongest possible negative and possible correlations.
 - 0 means no correlation.
- The correlation is **positive** if the point cloud slopes up as it goes farther to the right. This means larger y-values tend to go with larger x-values. It is **negative** if it slopes down as it goes farther to the right.
- If the points are tightly clustered around a line, it is a **strong** correlation. That means knowing the x-value gives us a pretty good idea of the y-value. If they are loosely scattered it is a **weak** correlation, and the y-value doesn’t depend much on the x-value.
- Points that are far above or below the cloud of points in a scatter plot are called **outliers**.
- We graphically summarize this relationship by drawing a straight line through the data cloud, so that the vertical distance between the line and all the points taken together is as small as possible. This line is called the **line of best fit** and allows us to predict y-values based on x-values.
“Smaller animals get adopted faster because they’re cuter.”

Do you agree? If so, why?

I hypothesize ...

What would you look for in the dataset to see if you are right?
Creating a Scatter Plot

1. For each row in the Sample Table on the left, add a point to the scatter plot on the right. Use the values from the age column for the x-axis, and values from the weeks column for the y-axis.

2. Do you see a pattern? Do the points seem to go up or down as age increases to the right?
 ◦ **Draw a cloud around all the points, and a line around which the cloud appears to be centered**

3. Does the line slope upwards or downwards?

4. Are the points tightly clustered around the line or loosely scattered?

<table>
<thead>
<tr>
<th>name</th>
<th>species</th>
<th>age</th>
<th>weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Sasha"</td>
<td>"cat"</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>"Boo-boo"</td>
<td>"dog"</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>"Felix"</td>
<td>"cat"</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>"Buddy"</td>
<td>"lizard"</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>"Nori"</td>
<td>"dog"</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>"Wade"</td>
<td>"cat"</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>"Nibplet"</td>
<td>"rabbit"</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>"Maple"</td>
<td>"dog"</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Identifying Form, Direction and Strength

Can you identify the Form, Direction, & Strength of these displays? **Note:** If the form is non-linear, we shouldn't report direction - a curve may rise and then fall.

A
- **Form:** Linear
- **Direction:** Positive
- **Strength:** Strong

B
- **Form:** Linear
- **Direction:** Positive
- **Strength:** Strong

C
- **Form:** Linear
- **Direction:** Positive
- **Strength:** Strong

D
- **Form:** Linear
- **Direction:** Positive
- **Strength:** Strong

E
- **Form:** Linear
- **Direction:** Positive
- **Strength:** Strong

F
- **Form:** Linear
- **Direction:** Positive
- **Strength:** Strong
Identifying Form and r-Values

Can you identify the Form, Direction, and Strength of these displays?

If the form is linear, approximate the \(r \)-value to express Direction and Strength.

Reminder: An \(r \)-value close to -1 is a strong negative relationship, an \(r \)-value close to 0 is weak, and an \(r \)-value close to +1 is a strong positive! If the relationship's strength is moderate, the \(r \)-value will be closer to -0.5 or +0.5.

A
Form: \(r \) close to:

B
Form: \(r \) close to:

C
Form: \(r \) close to:

D
Form: \(r \) close to:

E
Form: \(r \) close to:

F
Form: \(r \) close to:
Correlations in My Dataset

1) There may be a correlation between ____________________________ and ____________________________.

 I think it is a ____________________________, ____________________________ correlation,
 strong/weak positive/negative

 because

 __

 It might be stronger if I looked at

 __

 a sample or extension of my data

2) There may be a correlation between ____________________________ and ____________________________.

 I think it is a ____________________________, ____________________________ correlation,
 strong/weak positive/negative

 because

 __

 It might be stronger if I looked at

 __

 a sample or extension of my data

3) There may be a correlation between ____________________________ and ____________________________.

 I think it is a ____________________________, ____________________________ correlation,
 strong/weak positive/negative

 because

 __

 It might be stronger if I looked at

 __

 a sample or extension of my data
Computing Relationships

Linear Regression is a way of computing the line of best fit, which minimizes the sum of the squares of the vertical distances from the points to the line. Calculating the slope and intercept of this line is a task best left to computing or statistical software.

- **Slope** provides us with the easiest summary to grasp: it’s how much we predict the y-variable (response variable) will increase or decrease for each unit that the x-variable (explanatory variable) increases.

- **Correlation is not causation!** Correlation only suggests that two column variables are related, but does not tell us if one causes the other. For example, hot days are correlated with people running their air conditioners, but air conditioners do not cause hot days!

- **Sample size matters!** The number of data values is also relevant. We’d be more convinced of a positive relationship in general between cat age and time to adoption if a correlation of +0.57 were based on 50 cats instead of 5.
Drawing Predictors

For each of the scatter plots below, draw a **predictor line** that seems like the best fit. Describe the correlation in terms of Direction and Strength, then estimate the r-value as being close to -1, -0.5, 0, +0.5, or +1.

| A | Direction: Positive Negative None
| | Strength: Strong Weak
| | r: __________

| B | Direction: Positive Negative None
| | Strength: Strong Weak
| | r: __________

| C | Direction: Positive Negative None
| | Strength: Strong Weak
| | r: __________

| D | Direction: Positive Negative None
| | Strength: Strong Weak
| | r: __________

Interpreting Regression Lines & r-Values

Each description on the left is written about the linear regression findings on the right. Fill in the blanks using the information in the line of best fit and the r-value.

| 1 | For every additional Marvel Universe movie released each year, the average person is predicted to consume [amount] [more / fewer] pounds of sugar! This correlation is [strong, moderate, weak, practically non-existent]. | $y = -3.19x + 12$
$r = -0.05$ |
|---|---|---|
| 2 | Shoe size and height are [positively / negatively] correlated. If person A is one size bigger than person B, we predict that they will be roughly [amount] inches taller than person B as well. | $y = 1.65x + 52$
$r = 0.89$ |
| 3 | There is [a strong, a moderate, a weak, no] relationship found between the number of Uber drivers in a city and the number of babies born each year. | $y = -15.3x + 1150$
$r = 0.01$ |
| 4 | The correlation between weeks-of-school-missed and SAT score is [strong, moderate, weak, practically non-existent] and [positive / negative]. For every week a student misses, we predict a more than a [amount] point in their SAT score. | $y = -5.35x - 16$
$r = -0.65$ |
| 5 | There is a [strong, moderate, weak, practically non-existent] [positive / negative] correlation between the number of streaming video services someone has, and how much they weigh. For each service, we expect them to be roughly [amount] pounds heavier. | $y = 1.6x + 140$
$r = 0.12$ |
Regression Analysis in the Animals Dataset

1) I performed a linear regression on a sample of cats from the shelter and found a moderate (r=0.566), positive correlation between age of the cats (in years) and number of weeks to adoption. I would predict that a 1 year increase in age is associated with a 0.23 week increase in adoption time.

2) I performed a linear regression on a sample of dataset or subset and found a weak/strong/moderate (R=…), positive/negative correlation between age of the cats (in years) and number of weeks to adoption. I would predict that a 1 year increase in age is associated with a [slope, y-units] increase in adoption time.

3) I performed a linear regression on a sample of dataset or subset and found a weak/strong/moderate (R=…), positive/negative correlation between [x-axis] and [y-axis]. I would predict that a 1 [x-axis units] increase in [x-axis] is associated with a [slope, y-units] increase in [y-axis].
Regression Analysis in Your Dataset

My Dataset is ___________________________.

1) I performed a linear regression on ___________________________ and found correlation between ___________________________ and ___________________________.

a weak/strong/moderate (R=…), positive/negative ___________________________.

[x-axis] [y-axis] ___________________________.

I would predict that a 1 ___________________________ increase in ___________________________ is associated with a

_________________________ in ___________________________.

[x-axis units] [slope, y-units] [increase/decrease] [y-axis]

2) I performed a linear regression on ___________________________ and found correlation between ___________________________ and ___________________________.

a weak/strong/moderate (R=…), positive/negative ___________________________.

[x-axis] [y-axis] ___________________________.

I would predict that a 1 ___________________________ increase in ___________________________ is associated with a

_________________________ in ___________________________.

[x-axis units] [slope, y-units] [increase/decrease] [y-axis]

3) I performed a linear regression on ___________________________ and found correlation between ___________________________ and ___________________________.

a weak/strong/moderate (R=…), positive/negative ___________________________.

[x-axis] [y-axis] ___________________________.

I would predict that a 1 ___________________________ increase in ___________________________ is associated with a

_________________________ in ___________________________.

[x-axis units] [slope, y-units] [increase/decrease] [y-axis]
Case Study: Ethics, Privacy, and Bias

My Case Study is __

1) Read the case study you or your group was assigned, and write your summary here.

__
__
__
__
__
__

2) Is this a good thing or a bad thing? Why?

__
__
__
__
__

3) What are the arguments on each side?
 Data Science used for this purpose is good because...

__
__
__
__

Data Science used for this purpose is bad because...

__
__
__
__
Threats to Validity can undermine a conclusion, even if the analysis was done correctly.

Some examples of threats are:

- **Selection bias** - identifying the favorite food of the rabbits won't tell us anything reliable about what all the animals eat.

- **Study bias** - If someone is supposed to assess how much cat food is eaten each day on average, but they only measure how much cat food is put in the bowls (instead of how much is actually consumed), they’ll end up with an over-estimate.

- **Poor choice of summary** - Suppose a different shelter that had 10 animals recorded adoption times (in weeks) as 1, 1, 7, 7, 8, 8, 9, 9, 10. Using the mode (1) to report what’s typical would make it seem like the animals were adopted much quicker than they really were, since 7 out of 10 animals took at least 7 weeks to be adopted.

- **Confounding variables** - Shelter workers might steer people towards newer animals, because they’ve become attached to the animals that have been there for a while, making it appear that “staying in the shelter longer” means “less likely to be adopted”.
Some volunteers from the animal shelter surveyed a group of pet owners at a local dog park. They found that almost all of the owners were there with their dogs. From this survey, they concluded that dogs are the most popular pet in the state.

What are some possible threats to the validity of this conclusion?

The animal shelter noticed a large increase in pet adoptions between Christmas and Valentine's Day. They conclude that at the current rate, there will be a huge demand for pets this spring.

What are some possible threats to the validity of this conclusion?
Identifying Threats to Validity

The animal shelter wanted to find out what kind of food to buy for their animals. They took a random sample of two animals and the food they eat, and they found that spider and rabbit food was by far the most popular cuisine!

Explain why sampling just two animals can result in unreliable conclusions about what kind of food is needed.

A volunteer opens the shelter in the morning and walks all the dogs. At mid-day, another volunteer feeds all the dogs and walks them again. In the evening, a third volunteer walks the dogs a final time and closes the shelter. The volunteers report that the dogs are much friendlier and more active at mid-day, so the shelter staff assume the second volunteer must be better with animals than the others.

What are some possible threats to the validity of this conclusion?
Fake News!

Every claim below is wrong! Your job is to figure out why by looking at the data.

<table>
<thead>
<tr>
<th>Data</th>
<th>Claim</th>
<th>What’s Wrong</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The average player on a basketball team is 6’1”.</td>
<td>“Most of the players are taller than 6 feet.”</td>
</tr>
<tr>
<td>2</td>
<td>Linear regression found a positive correlation ($r=0.18$) between people's height and salary.</td>
<td>“Higher salaries can make people taller!”</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>“According to the predictor function indicated here, the value on the x-axis will predict the value on the y-axis 63.6% of the time.”</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>“According to this bar chart, Felix makes up a little more than 15% of the total ages of all the animals in the dataset.”</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>“According to this histogram, most animals weigh between 40 and 60 pounds.”</td>
</tr>
<tr>
<td>6</td>
<td>Linear regression found a negative correlation ($r=-0.91$) between the number of hairs on a person's head and their likelihood of owning a wig.</td>
<td>“Owning wigs causes people to go bald.”</td>
</tr>
</tbody>
</table>
1) Using real data and displays from your dataset, come up with a misleading claim.
2) Trade papers with someone and figure out why their claims are wrong!

<table>
<thead>
<tr>
<th>Data</th>
<th>Claim</th>
<th>Why it’s wrong</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Directions:

Contract and Purpose Statement
Every contract has three parts...

function name :: domain -> range

what does the function do?

Examples
Write some examples, then circle and label what changes...

examples:

function name (input[s]) is what the function produces

end

Definition
Write the definition, giving variable names to all your input values...

fun function name (variable[s]):

function name variable(s)

what the function does with those variable(s)

end

Directions:

Contract and Purpose Statement
Every contract has three parts...

function name :: domain -> range

what does the function do?

Examples
Write some examples, then circle and label what changes...

examples:

function name (input[s]) is what the function produces

end

Definition
Write the definition, giving variable names to all your input values...

fun function name (variable[s]):

function name variable(s)

what the function does with those variable(s)

end
Design Recipe

Directions:

Contract and Purpose Statement
Every contract has three parts...

function name :: domain -> range

what does the function do?

Examples
Write some examples, then circle and label what changes...

examples:

function name (input(s)) is what the function produces

end

Definition
Write the definition, giving variable names to all your input values...

fun function name (variable(s)):

what the function does with those variable(s)

directions:

contract and purpose statement
Every contract has three parts...

function name :: domain -> range

what does the function do?

examples
Write some examples, then circle and label what changes...

examples:

function name (input(s)) is what the function produces

end

definition
Write the definition, giving variable names to all your input values...

fun function name (variable(s)):

what the function does with those variable(s)
Design Recipe

Directions:

Contract and Purpose Statement
Every contract has three parts...

function name :: domain -> range
what does the function do?

Examples
Write some examples, then circle and label what changes...

examples:

function name (input(s)) is what the function produces

end

Definition
Write the definition, giving variable names to all your input values...

fun function name (variable(s)) :

what the function does with those variable(s)

end

Directions:

Contract and Purpose Statement
Every contract has three parts...

function name :: domain -> range
what does the function do?

Examples
Write some examples, then circle and label what changes...

examples:

function name (input(s)) is what the function produces

end

Definition
Write the definition, giving variable names to all your input values...

fun function name (variable(s)) :

what the function does with those variable(s)

end
Contracts tell us how to use a function. For example: `num-min :: (a :: Number, b :: Number) -> Number` tells us that the name of the function is `num-min`, it takes two inputs (both Numbers), and it evaluates to a `Number`. From the contract, we know `num-min(4, 6)` will evaluate to a `Number`. Use the blank line under each contract for notes or sample code for that function!

<table>
<thead>
<tr>
<th>Name</th>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>triangle</td>
<td>:: (side-length :: Number, style :: String, color :: String)</td>
<td>Image</td>
</tr>
<tr>
<td>circle</td>
<td>:: (radius :: Number, style :: String, color :: String)</td>
<td>Image</td>
</tr>
<tr>
<td>star</td>
<td>:: (radius :: Number, style :: String, color :: String)</td>
<td>Image</td>
</tr>
<tr>
<td>rectangle</td>
<td>:: (width :: Num, height :: Num, style :: Str, color :: Str)</td>
<td>Image</td>
</tr>
<tr>
<td>ellipse</td>
<td>:: (width :: Num, height :: Num, style :: Str, color :: Str)</td>
<td>Image</td>
</tr>
<tr>
<td>square</td>
<td>:: (size-length :: Number, style :: String, color :: String)</td>
<td>Image</td>
</tr>
<tr>
<td>text</td>
<td>:: (str :: String, size :: Number, color :: String)</td>
<td>Image</td>
</tr>
<tr>
<td>overlay</td>
<td>:: (img1 :: Image, img2 :: Image)</td>
<td>Image</td>
</tr>
<tr>
<td>beside</td>
<td>:: (img1 :: Image, img2 :: Image)</td>
<td>Image</td>
</tr>
<tr>
<td>above</td>
<td>:: (img1 :: Image, img2 :: Image)</td>
<td>Image</td>
</tr>
<tr>
<td>put-image</td>
<td>:: (img1 :: Image, x :: Number, y :: Number, img2 :: Image)</td>
<td>Image</td>
</tr>
<tr>
<td>rotate</td>
<td>:: (degree :: Number, img :: Image)</td>
<td>Image</td>
</tr>
<tr>
<td>scale</td>
<td>:: (factor :: Number, img :: Image)</td>
<td>Image</td>
</tr>
</tbody>
</table>
Contracts

Contracts tell us how to use a function. For example: \texttt{num-min :: (a :: Number, b :: Number) \rightarrow Number} tells us that the name of the function is \texttt{num-min}, it takes two inputs (both Numbers), and it evaluates to a \texttt{Number}. From the contract, we know \texttt{num-min(4, 6)} will evaluate to a \texttt{Number}. Use the blank line under each contract for notes or sample code for that function!

<table>
<thead>
<tr>
<th>Name</th>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>string-repeat</td>
<td>\texttt{:: (text :: String, repeat :: Number)}</td>
<td>\texttt{\rightarrow String}</td>
</tr>
<tr>
<td>string-contains</td>
<td>\texttt{:: (text :: String, search-for :: String)}</td>
<td>\texttt{\rightarrow Boolean}</td>
</tr>
<tr>
<td>num-sqr</td>
<td>\texttt{:: (n :: Number)}</td>
<td>\texttt{\rightarrow Number}</td>
</tr>
<tr>
<td>num-sqrt</td>
<td>\texttt{:: (n :: Number)}</td>
<td>\texttt{\rightarrow Number}</td>
</tr>
<tr>
<td>num-min</td>
<td>\texttt{:: (a :: Number, b:: Number)}</td>
<td>\texttt{\rightarrow Number}</td>
</tr>
<tr>
<td>num-max</td>
<td>\texttt{:: (a :: Number, b:: Number)}</td>
<td>\texttt{\rightarrow Number}</td>
</tr>
<tr>
<td>count</td>
<td>\texttt{:: (t :: Table, col :: String)}</td>
<td>\texttt{\rightarrow Table}</td>
</tr>
<tr>
<td>mean</td>
<td>\texttt{:: (t :: Table, col :: String)}</td>
<td>\texttt{\rightarrow Number}</td>
</tr>
<tr>
<td>median</td>
<td>\texttt{:: (t :: Table, col :: String)}</td>
<td>\texttt{\rightarrow Number}</td>
</tr>
<tr>
<td>modes</td>
<td>\texttt{:: (t :: Table, col :: String)}</td>
<td>\texttt{\rightarrow List<Number>}</td>
</tr>
<tr>
<td>bar-chart</td>
<td>\texttt{:: (t :: Table, col :: String)}</td>
<td>\texttt{\rightarrow Image}</td>
</tr>
<tr>
<td>pie-chart</td>
<td>\texttt{:: (t :: Table, col :: String)}</td>
<td>\texttt{\rightarrow Image}</td>
</tr>
<tr>
<td>histogram</td>
<td>\texttt{:: (t :: Table, values :: String, bin-width :: Number)}</td>
<td>\texttt{\rightarrow Image}</td>
</tr>
</tbody>
</table>
Contracts tell us how to use a function. For example: \texttt{num-min :: (a :: Number, b :: Number) \rightarrow Number} tells us that the name of the function is \texttt{num-min}, it takes two inputs (both Numbers), and it evaluates to a \texttt{Number}. From the contract, we know \texttt{num-min(4, 6)} will evaluate to a \texttt{Number}. Use the blank line under each contract for notes or sample code for that function!

<table>
<thead>
<tr>
<th>Name</th>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>box-plot</td>
<td>\texttt{(t :: Table, col :: String)}</td>
<td>\rightarrow \texttt{Image}</td>
</tr>
<tr>
<td>modified-box-plot</td>
<td>\texttt{(t :: Table, col :: String)}</td>
<td>\rightarrow \texttt{Image}</td>
</tr>
<tr>
<td>scatter-plot</td>
<td>\texttt{(t :: Table, labels :: String, xs :: String, ys :: String)}</td>
<td>\rightarrow \texttt{Image}</td>
</tr>
<tr>
<td>image-scatter-plot</td>
<td>\texttt{(t :: Table, xs :: String, ys :: String, f :: (Row \rightarrow \texttt{Image})}</td>
<td>\rightarrow \texttt{Image}</td>
</tr>
<tr>
<td>r-value</td>
<td>\texttt{(t :: Table, xs :: String, ys :: String)}</td>
<td>\rightarrow \texttt{Number}</td>
</tr>
<tr>
<td>lr-plot</td>
<td>\texttt{(t :: Table, labels :: String, xs :: String, ys :: String)}</td>
<td>\rightarrow \texttt{Image}</td>
</tr>
<tr>
<td>random-rows</td>
<td>\texttt{(t :: Table, num-rows :: Number)}</td>
<td>\rightarrow \texttt{Table}</td>
</tr>
<tr>
<td>\texttt{<Table>.row-n}</td>
<td>\texttt{(n :: Number)}</td>
<td>\rightarrow \texttt{Row}</td>
</tr>
<tr>
<td>\texttt{<Table>.order-by}</td>
<td>\texttt{(col :: String, increasing :: Boolean)}</td>
<td>\rightarrow \texttt{Table}</td>
</tr>
<tr>
<td>\texttt{<Table>.filter}</td>
<td>\texttt{(test :: (Row \rightarrow \texttt{Boolean})}}</td>
<td>\rightarrow \texttt{Table}</td>
</tr>
<tr>
<td>\texttt{<Table>.build-column}</td>
<td>\texttt{(col :: String, builder :: (Row \rightarrow \texttt{Any})}}</td>
<td>\rightarrow \texttt{Table}</td>
</tr>
<tr>
<td>bar-chart-summarized</td>
<td>\texttt{(t :: Table, labels :: String, values :: String)}</td>
<td>\rightarrow \texttt{Image}</td>
</tr>
<tr>
<td>pie-chart-summarized</td>
<td>\texttt{(t :: Table, labels :: String, values :: String)}</td>
<td>\rightarrow \texttt{Image}</td>
</tr>
</tbody>
</table>