Name: \qquad

Student Workbook

Fall, 2024 - Pyret Edition

Workbook v3.1

Brought to you by the Bootstrap team:

- Emmanuel Schanzer
- Kathi Fisler
- Shriram Krishnamurthi
- Dorai Sitaram
- Joe Politz
- Ben Lerner
- Nancy Pfenning
- Flannery Denny
- Rachel Tabak

Pioneers in Computing and Mathematics

The pioneers pictured below are featured in our Computing Needs All Voices lesson. To learn more about them and their contributions, visit https://bit.ly/bootstrap-pioneers.

We are in the process of expanding our collection of pioneers. If there's someone else whose work inspires you, please let us know at https://bit.ly/pioneer-suggestion.

Notice and Wonder

Write down what you Notice and Wonder from the What Most Schools Don't Teach video.
"Notices" should be statements, not questions. What stood out to you? What do you remember? "Wonders" are questions.
What do you Notice? What do you Wonder?

Windows and Mirrors

Think about the images and stories you've just encountered. Identify something(s) that served as a mirror for you, connecting you with your own identity and experience of the world. Write about who or what you connected with and why.

Identify something(s) from the film or the posters that served as a window for you, giving you insight into other people's experiences or expanding your thinking in some way.

Reflection: Problem Solving Advantages of Diverse Teams

This reflection is designed to follow reading LA Times Perspective: A solution to tech's lingering diversity problem? Try thinking about ketchup

1) The author argues that tech companies with diverse teams have an advantage. Why?
\qquad
\qquad
\qquad
\qquad
2) What suggestions did the article offer for tech companies looking to diversify their teams?
\qquad
\qquad
\qquad
\qquad
3) What is one thing of interest to you in the author's bio?
\qquad
\qquad
\qquad
\qquad
4) Think of a time when you had an idea that felt "out of the box". Did you share your idea? Why or why not?
\qquad
\qquad
\qquad
\qquad
5) Can you think of a time when someone else had a strategy or idea that you would never have thought of, but was interesting to you and/or pushed your thinking to a new level?
\qquad
\qquad
\qquad
\qquad
6) Based on your experience of exceptions to mainstream assumptions, propose another pair of questions that could be used in place of "Where do you keep your ketchup?" and "What would you reach for instead?"

Introduction to Computational Data Science

Many important questions ("What's the best restaurant in town?", "Is this law good for citizens?", etc.) are answered with data . Data Scientists try to answer these questions by writing programs that ask questions about data .

Data of all types can be organized into Tables.

- Every Table has a header row and some number of data rows.
- Quantitative data is numeric and measures an amount, such as a person's height, a score on a test, distance, etc. A list of quantitative data can be ordered from smallest to largest.
- Categorical data is data that specifies qualities, such as sex, eye color, country of origin, etc. Categorical data is not subject to the laws of arithmetic - for example, we cannot take the "average" of a list of colors.

Categorical or Quantitative?

- Quantitative data measures an amount and can be ordered from smallest to largest.
- Categorical data specifies qualities and is not subject to the laws of arithmetic - for example, we cannot take the "average" of a list of colors.

Note: Numbers can sometimes be categorical rather than quantitative!
For each piece of data below, circle whether it is Categorical or Quantitative.

1) Hair color	categorical	quantitative
2) Age	categorical	quantitative
3) ZIP Code	categorical	quantitative
4) Date	categorical	quantitative
5) Height	categorical	quantitative
6) Sex	categorical	quantitative
7) Street Name		quantive

For each question, circle whether it will be answered by Categorical or Quantitative data.
8) We'd like to find out the average price of cars in a lot.
9) We'd like to find out the most popular color for cars.
10) We'd like to find out which puppy is the youngest.
11) We'd like to find out which cats have been fixed.
12) We want to know which people have a ZIP code of 02907.
categorical
categorical
categorical
categorical
categorical
quantitative
quantitative
quantitative
quantitative
quantitative

We decide to sort the animals in ascending order (smallest-to-largest) by age. Then we sort the table in alphabetical order (A-to-Z) by name. Does that mean name is a quantitative column? Why or why not? \qquad
\qquad
\qquad

Questions and Column Descriptions

1) Take some time to look through the Animals Dataset. What stands out to you? Which animals are interesting? What patterns do you notice? Put your observations in the Notice column below.
2) Do any of these observations make you wonder? If so, write your question next to the observation in the Wonder column. If not, think of another question to write down.

Notice	Wonder	Answered by this dataset?
I notice that	Is it because he was so big?	Yes

Describe the table, and two of the columns, by filling in the blanks below.

1. This dataset is about \qquad ; it contains \qquad data rows.
2. Some of the columns are:
a. \qquad , which contains \qquad data. Some example values are:
column name
\qquad .
b. \qquad which contains \qquad data. Some example values are:
\qquad .

What Questions Can You Answer with the Given Data?

The following is a dataset of a bicycle rider's training rides.
date miles time (w/stops) weather average speed max speed $04 / 10 / 2018$ 10 44 "cloudy" 13 30 $05 / 30 / 2018$ 15 66 "sunny" 13.5 22 $06 / 12 / 2018$ 12 61 "rainy" 11.2 25 $07 / 04 / 2018$ 24 103 "sunny" 14 26 $07 / 12 / 2018$ 24 120 "windy" 12.5 26

1) Decide whether each questions below can or cannot be answered with the given data and circle your selection.

Question

How many miles did the cyclist ride June 12th?

What tire pressure produces the highest average speed?	Yes	No
What is the average time it takes this cyclist to ride 1 mi?	Yes	No
Does this cyclist ride slower when it is rainy?	Yes	No
Does this cyclist ride faster when they are late to an appointment?	Yes	No
How many miles has the cyclist ridden in total as part of their training?	Yes	No

2) In the space provided below each question, explain how you could answer the question using the data or why you cannot answer the
question. question.
\star Are there any questions that you could find the answers to more than one way?

Opening Questions

Sports

- Who is the best quarterback of all time?
- Are baseball pitchers throwing harder than ever?
- How much more do male soccer players earn than females?
- How common is it for former Olympic athletes to become coaches?
- How much does an extra inch of height help a basketball player?

PopCulture

- What percentage of people have seen the movie that won last year's Best Picture Award?
- Who tends to be more popular: bands or solo singers?
- Are younger actors paid more than older actors?
- Are movies with female leads as profitable as movies with male leads?
- Does winning a Grammy increase sales?

Politics

- Is "Stop and Frisk" a racist policy?
- Do Republican politicians tend to come from different states than Democratic ones?
- Do people in countries that have universal healthcare live longer than people in countries that don't?
- Was press coverage slanted for or against a particular candidate?

Education

- Do small schools perform better than large ones?
- Which has a stronger correlation with student achievement: race or wealth?
- Do bilingual classes result in better outcomes for ESL/ELL students?
- How does quality of education differ in various regions of the United States?

Introduction to Programming

The Editor is a software program we use to write Code. Our Editor allows us to experiment with Code on the right-hand side, in the Interactions Area. For Code that we want to keep, we can put it on the left-hand side in the Definitions Area. Clicking the "Run" button causes the computer to re-read everything in the Definitions Area and erase anything that was typed into the Interactions Area.

Data Types

Programming languages involve different data types, such as Numbers, Strings, Booleans, and even Images.

- Numbers are values like $1,0.4,1 / 3$, and -8261.003.
- Numbers are usually used for quantitative data and other values are usually used as categorical data.
- In Pyret, any decimal must start with a 0. For example, 0.22 is valid, but . 22 is not.
- Strings are values like "Emma", "Rosanna", "Jen and Ed", or even "08/28/1980".
- All strings must be surrounded by quotation marks.
- Booleans are either true or false.

All values evaluate to themselves. The program 42 will evaluate to 42 , the String "Hello" will evaluate to "Hello", and the Boolean false will evaluate to false.

Operators

Operators (like +, -, *, < , etc.) work the same way in Pyret that they do in math.

- Operators are written between values, for example: $4+2$.
- In Pyret, operators must always have spaces around them. $4+2$ is valid, but $4+2$ is not.
- If an expression has different operators, parentheses must be used to show order of operations. $4+2+6$ and $4+(2$ * 6) are valid, but $4+2$ * 6 is not.

Applying Functions

Applying functions works much the way it does in math. Every function has a name, takes some inputs, and produces some output. The function name is written first, followed by a list of arguments in parentheses.

- In math this could look like $f(5)$ or $g(10,4)$.
- In Pyret, these examples would be written as $f(5)$ and $g(10,4)$.
- Applying a function to make images would look like star(50, "solid", "red").
- There are many other functions, for example num-sqr, num-sqrt, triangle, square, string-repeat, etc.

Functions have contracts, which help explain how a function should be used. Every Contract has three parts:

- The Name of the function - literally, what it's called.
- The Domain of the function - what type(s) of value(s) the function consumes, and in what order.
- The Range of the function - what type of value the function produces.

Strings and Numbers

Make sure you've loaded code.pyret.org_(CPO), clicked "Run", and are working in the Interactions Area on the right. Hit Enter/return to evaluate expressions you test out.

Strings

String values are always in quotes.

- Try typing your name (in quotes!).
- Try typing a sentence like "I'm excited to learn to code!" (in quotes!).
- Try typing your name with the opening quote, but without the closing quote. Read the error message!
- Now try typing your name without any quotes. Read the error message!

1) Explain what you understand about how strings work in this programming language. \qquad

Numbers

2) Try typing 42 into the Interactions Area and hitting "Enter". Is 42 the same as " 42 " ?Why or why not?
3) What is the largest number the editor can handle?
4) Try typing 0.5 .Then try typing . 5 . Then try clicking on the answer. Experiment with other decimals.

Explain what you understand about how decimals work in this programming language. \qquad
5) What happens if you try a fraction like $1 / 3$? \qquad
6) Try writing negative integers, fractions and decimals. What do you learn? \qquad

Operators

7) Just like math, Pyret has operators like + , , * and / .

Try typing in $4+2$ and then $4+2$ (without the spaces). What can you conclude from this?
8) Type in the following expressions, one at a time: $4+2 * 6(4+2) * 64+(2 * 6)$ What do you notice?
9) Try typing in 4 + "cat" , and then "dog" + "cat" .What can you conclude from this?

Booleans

Boolean-producing expressions are yes-or-no questions, and will always evaluate to either true ("yes") or false ("no").
What will the expressions below evaluate to? Write down your prediction, then type the code into the Interactions Area to see what it returns.

	Prediction	Result		Prediction	Result
1) $3<=4$			2) "a" > "b"		
3) $3==2$			4) "a" < "b"		
5) $2<4$			6) "a" == "b"		
7) $5>=5$			8) "a" <> "a"		
9) $4>=6$			10) "a" >= "a"		
11) $3<>3$			12) "a" <> "b"		
13) $4<>3$			14) "a" >= "b"		

16) In your own words, describe what >= does. \qquad
17) In your own words, describe what <> does.

Prediction:

Result:
18) string-contains("catnap", "cat")
19) string-contains("cat", "catnap")
20) In your own words, describe what string-contains does. Can you generate another expression using string-contains that returns true?

There are infinite string values ("a", "aa", "aaa"...) and infinite number values out there (...-2,-1,0,-1,2...). But how many different Boolean values are there? \qquad

Functions for Tables

Open the Animals Starter File and click "Run".
In the Interactions Window on the right, type animals-table and hit "Enter" to see the default view of the table.

sort

Suppose we wanted to see the names of the animals in alphabetical order...
The sort function takes in three pieces of information:

1. A table
2. A column we want to sort the table by (declared using a String)
3. The order in which we want the column sorted (declared using a Boolean)

Test out these two expressions in the Interactions Area and record what you learn about ordering below:

- sort(animals-table, "species", true)
- sort(animals-table, "species", false)

1) true sorts the table... \qquad
2) false sorts the table...

Suppose we wanted to sort the animals-table by the weeks column to determine which animals were adopted quickest...
3) Would you use true or false ? Explain. \qquad
4) Test it out, and write your thinking about quantitative columns at the end of your explanations of true and false above.
5) Which animal(s) were adopted the quickest?
6) Some functions produce Numbers, some produce Strings, some produce Booleans. What did the sort function produce? \qquad

There are many other functions available to us in Pyret. We can describe them using contracts. The Contract for sort is:

> \# sort :: Table, String, Boolean -> Table

- Each Contract begins with the function name: in this case sort
- Lists the data types required to satisfy its Domain:___ in this case Table, String, Boolean
- And then declares the data type of the Range it will return. __ in this case Table
- Contracts can also be written with more detail, by adding variable names in the Domain:

$$
\text { \# sort :: (} \left.\frac{\text { Table }}{\text { table-name }}, \frac{\text { String }}{\text { column-name }} \frac{\text { Boolean }}{\text { order }}\right) ~->~ T a b l e ~
$$

Suppose we wanted to sort the animals-table by the legs column to determine which animals had the most legs...
7) Fill in the blanks below with the code you'd use (We've put pieces of the Contract below each line to help you!):

8) Which animal(s) had the most legs?
9) Think of another question you might answer quickly by sorting the table.
10) What code would you write to answer your question?
\qquad
1 \qquad ,

Functions for Tables (continued)

count

\# count :: Table, String -> Table

1) What is the Domain of count ? \qquad
2) What is the Range of count ? \qquad
3) What do you suspect the String in the Domain will describe?

Suppose we wanted to know how many animals had 4 legs...
Type count(animals-table, "legs") into the Interactions Area and click "Enter"
4) What did the expression produce? \qquad
5) How many animals had 4 legs? \qquad
6) Think of another question you might be able to answer with the count function.
7) Fill in the blanks with the code you'd write.
function-name
$($ \qquad , \qquad)
8) Tables that summarize data with a count are commonly used in the real world. Give two examples of where you've seen them before:

- Example 1: \qquad
- Example 2: \qquad

9) Newscasters and journalists often incorporate data into their reporting. How else might they display this information, besides using a table?

first-n-rows

10) Type first-n-rows(animals-table, 5).What happens? \qquad
11) If we wanted a table of the first 3 rows of the animals-table, what code would you write? \qquad
12) What is the Contract for first-n-rows ? \qquad

What happens when you type first-n-rows(sort(animals-table, "pounds", true), 5)?

Note: In this case, the output of sort(animals-table, "pounds", true) is the Table first-n-rows is taking in!
$\star \star$ See if you can figure out how to compose the code that would generate a table of the 10 oldest animals!

Circles of Evaluation: Count, Sort, First-n-rows

For each scenario below, draw the Circle of Evaluation and then use it to write the code.
When you're done, test your code out in the Animals Starter File and make sure it does what you'd expect it to.
\# count :: Table, String -> Table
\# first-n-rows :: Table, Number -> Table
\# sort :: Table, String, Boolean -> Table

1) We want to see the 10 animals who were adopted the quickest.

Circle of Evaluation:
code:
2) We want to see the heaviest animal.

Circle of Evaluation:
code: \qquad
3) We want to take the first 8 animals from the table and put them in alphabetical order (by name).

Circle of Evaluation:
code:
4) You notice that the lightest 16 animals weigh under 10 pounds and you want to know the count (by species) of those animals.

Circle of Evaluation:
code:

Catching Bugs when Sorting Tables

Learning about a Function through Error Messages

1) Type sort into the Interactions Area of the Animals Starter File and hit "Enter". What do you learn?
2) We know that all functions need an open parenthesis and at least one input! Type sort (animals-table) in the Interactions Area and hit Enter/return. Read the error message. What hint does it give us about how to use this function?

What Kind of Error is it?

syntax errors - when the computer cannot make sense of the code because of unclosed strings, missing commas or parentheses, etc. contract errors - when the function isn't given what it needs (the wrong type or number of arguments are used)
3) In your own words, the difference between syntax errors and contract errors is: \qquad

Finding Mistakes with Error Messages

The code below is BUGGY! Read the code and the error messages, and see if you can catch the mistake WITHOUT typing the code into Pyret.
4) sort(animals-table, name , true)

The name name is unbound:
sort(animals-table, name , true)
It is used but not previously defined.
This is a \qquad error. The problem is that \qquad
5) sort(animals-table, "name" , "true")

```
    The Boolean annotation:
    fun sort(t :: Table, col :: String, asc :: Boolean)
    was not satisfied by the value
            "true"
```

This is a \qquad error. The problem is that \qquad
6) sort(animals-table "name" true)

Pyret didn't understand your program around:
sort(animals-table "name" true)
You may need to add or remove some text to fix your program. Look carefully before the
highlighted text. Is there a missing colon (:), comma (,), string marker ("), or keyword? Is
there something there that shouldn't be?
This is a \qquad error. The problem is that \qquad
7) sort(animals-table, "name", true

Pyret didn't expect your program to end as soon as it did:
sort(animals-table, "name", true
You may be missing an "end", or closing punctuation like ")" or "]" somewhere in your program.
This is a \qquad error. The problem is that \qquad
contract/syntax
8) sort (animals-table, "name", true)

Pyret thinks this code is probably a function call:
sort (animals-table, "name", true)
Function calls must not have space between the function expression and the arguments.
This is a \qquad error. The problem is that
contract/syntax
\qquad

Contracts for Image-Producing Functions

Log into code.pyret.org_(CPO) and click "Run". Experiment with each of the functions listed below, trying to find an expression that will build. Record the contract and example code for each function you are able to successfully build!

Challenge: Composing with Circles of Evaluation

What if we wanted to see your name written on a diagonal?

- We know that we can use the text function to make an Image of your name.
- Pyret also has a function called rotate that will rotate any Image a specified number of degrees.
\# rotate :: Number, Image -> Image
But how could the rotate and text functions work together? Draw a Circle of Evaluation, translate it to code and test it out in the Editor!

Exploring Displays

Circles of Evaluation: Composing Functions to Make Displays

Using the Contracts below as a reference, draw the Circle of Evaluation for each prompt.

```
# pie-chart :: Table, String -> Image
# box-plot :: Table, String -> Image
# bar-chart :: Table, String -> Image
# first-n-rows :: Table, Number -> Table
# histogram :: Table, String, String, Number -> Image
# sort :: Table, String, Boolean -> Table
```

1) Make a bar-chart of the lightest 16 animals by sex.

What other bar chart might you want to compare this to?
2) Take the heaviest 20 animals and make a histogram of weeks to adoption (use "species" for your labels).

What other histogram might you want to compare this to? \qquad
3) Make a box-plot of age for the 11 animals who spent the most weeks in the shelter.

What other box plot might you want to compare this to?
4) Make a pie-chart of species for the 18 animals who spent the fewest weeks in the shelter.

Exploring Displays (2)

Line Graphs \# line-graph : Table, String, String, String -> Image	
$\text { function-name } \quad\left(\begin{array}{l} \text { table-name:: Table } \end{array}\right.$	column-name::String column-name::String ,
	column-name::String
Sketch a line graph below.	Line Graphs summarize 2 columns of \qquad data.
	This kind of display tells us
Scatter Plots\# scatter-plot : : Table, String, String, String -> Image	
1	
Sketch a scatter plot below.	Sern
	Scatter Plots summarize 2 columns of \qquad data.
	This kind of display tells us...
LR Plots\# lr-plot : : Table, String, String, String -> Image	
function-name table-name::Table	\qquad
Sketch an Linear Regression Plot below.	LR Plots summarize 2 columns of \qquad data.
	This kind of display tells us...

Match each prompt on the left to the Circle of Evaluation used to answer it.
Composing Functions.Match

Circles of Evaluation: Composing Functions to Make Displays (2)

Using the Contracts below as a reference, draw the Circle of Evaluation for each prompt.

```
# pie-chart :: Table, String -> Image
# bar-chart :: Table, String -> Image
# histogram :: Table, String, String, Number -> Image
```

\# box-plot :: Table, String -> Image
\# first-n-rows :: Table, Number -> Table
\# sort :: Table, String, Boolean -> Table

1) Take the youngest 12 animals and make a box-plot of pounds.

What other box plot might you want to compare this to? \qquad
2) Make a pie-chart of legs for the 10 oldest animals.

What other pie chart might you want to compare this to?

* Take the 20 lightest animals, then take the 10 youngest of those animals and make a bar-chart of species

Displaying Categorical Data

Data Scientists use displays to visualize data. You've probably seen some of these charts, graphs and plots yourselves!
When it comes to displaying Categorical Data, there are two displays that are especially useful:

1. Bar charts show the count or percentage of rows in each category.

- Bar charts provide a visual representation of the frequency of values in a categorical column.
- Bar charts have a bar for every category in a column.
- The more rows in a category, the taller the bar.
- Bars in a bar chart can be shown in any order, without changing the meaning of the chart. However, bars are usually shown in some sensible order (bars for the number of orders for different t-shirt sizes might be presented in order of smallest to largest shirt).

2. Pie charts show the percentage of rows in each category.

- Pie charts provide a visual representation of the relative frequency of values in a categorical column.
- Pie charts have a slice for every category in a column.
- The more rows in a category, the larger the slice.
- Slices in a pie chart can be shown in any order, without changing the meaning of the chart. However, slices are usually shown in some sensible order (e.g. slices might be shown in alphabetical order or from the smallest to largest slice).

Count, Bar Charts and Pie Charts

Open the Expanded Animals Starter File and click "Run".

A - Displays for Categorical Data

Test the following expressions in the Interactions Area:

- count(more-animals, "species")
- bar-chart(more-animals, "species")

1) How are the similar?
2) Which do you like better: the bar chart or the table? Why?

Now testout the expression pie-chart(more-animals, "species")
3) How does the pie chart connect to the bar chart you just made?
\qquad

Note: When you first build a bar chart or pie chart in Pyret, they are interactive displays. That means that you can mouse over them for more information. Hit the up arrow in the interactions area to reload your last expression and test it out!

B - Comparing Bar and Pie Charts

Best completed after Bar \& Pie Chart - Notice and Wonder and Matching Bar and Pie Charts
4) How are pie charts similar to bar charts?
5) How are pie charts and bar charts different?
6) What information is provided in bar charts that is hidden in pie charts?
7) Why might this sometimes be problematic?
8) When would you want to use one chart instead of another?

C-Bar and Pie Charts for Quantitative Data?

9) Make a pie-chart and bar-chart for the pounds column. Why isn't grouping the pounds column very useful?
10) Look at the list of columns in the Definitions Area. For which columns do you expect pie charts to be most useful?

- What questions about the dataset are you curious to investigate using these displays?

¿лəриом	дечМ		
¿ぇəриом	речМ	¿əכ! 10 N	теч
	sese, aцоس 10 OML. ${ }^{\text {"ueis }} \forall_{4}$ - "शٍपМ.		
		IH ‘ЭОС !!емен	

Matching Bar and Pie Charts

Match each bar chart below to the pie chart that displays the racial demographic data from the same school district.

Cleveland Municipal School District

San Diego City Unified School District

Houston Independent School District

New York City Dept of Education

- "White"
"Black"
- "Hispanic or Latinx"
- "Asian"
"Some other race alone"
"Two or more races"

3

4

1
A

2
B

C

Introducing Displays for Subgroups

This page is designed to be used with the Expanded Animals Starter File.

Part A

1) How many tarantulas are male? Hint: Sort the table by species!
2) How many tarantulas are female? \qquad
3) Would you imagine that the distribution of male and female animals will be similar for every species at the shelter? Why or why not?

Part B

Sometimes we want to compare sub-groups across groups. In this example, we want to compare the distribution of sexes across each species.
Fortunately, Pyret has two functions that let us specify both a group and a subgroup:

```
# stacked-bar-chart :: (\frac{Table}{\mathrm{ table-name}},\frac{\mathrm{ String,}}{\mathrm{ group }},\frac{\mathrm{ String )}}{\mathrm{ subgroup }})
# multi-bar-chart :: (\frac{Table}{\mathrm{ table-name}},\frac{\mathrm{ String}}{\mathrm{ group }},\frac{\mathrm{ String )}}{\mathrm{ Subgroup }})
```

4) Make a stacked-bar-chart showing the distribution of sexes across species in our shelter.
5) Make a multi-bar-chart showing the distribution of sexes across species in our shelter.
6) What do you notice? \qquad
\qquad
\qquad
7) What do you wonder? \qquad
8) Which display would be most efficient for answering the question: "What percentage of cats are female?" Why?
9) Which display would be most efficient for answering the question: "Are there more cats or dogs?" Why?
10) Write a question of your own that involves comparing subgroups across groups. \qquad

Which display would be most efficient for answering your question? \qquad Make the display. What did you learn? \qquad
11) Write a different question that would be more efficient to answer with the other kind of display. \qquad

What did you learn from making this display? \qquad

Multi Bar \& Stacked Bar Charts - Notice and Wonder

The displays on the left are called multi bar charts.
The displays on the right are called stacked barcharts.

1) Is it possible that the same data was used for the multi bar charts as for the stacked bar charts? How do you know?
2) Write a question that it would be easiest to answer by looking at one of the multi bar charts.
3) Write a question that it would be easiest to answer by looking at one of the stacked bar charts.

Bar Chart - Notice and Wonder

What do you Notice and Wonder about the pie charts below?

What do you Notice?
What do you Wonder?

Pie Chart-Notice and Wonder

What do you Notice and Wonder about the pie charts below?

| What do you Notice? | |
| :--- | :--- | :--- |

Matching Stacked and Multi Bar Charts

Match each stacked bar chart below to the multi bar chart that displays the same information.

2
B

3
C

4
D

Making Infographics Rubric

	Wow!	Getting There	Needs Improvement
Preparatory Work	The display or ratio statement formed a strong foundation for the rest of my infographic project.	The display or ratio statement needed revision in order to inspire a meaningful infographic (e.g., it was unclear or it was not interesting).	I did not create a display or ratio statement or what I produced was not conducive to creating a meaningful infographic.
Ratio statement: Impact	My ratio statement will really give those who read it something fascinating to contemplate!	My ratio statement is interesting but probably won't spark any deep conversations.	My ratio statement is dull and uninspired.
Images chosen: Accessibility	The imagery that I used when creating my infographic is inclusive. My images avoid stereotyping and help the viewer relate to and understand the topic.	The imagery that I used mostly avoids stereotyping. More inclusive imagery might help viewers connect with my topic better.	The imagery that I included reinforces stereotypes and might leave some viewers feeling disconnected from my message.
Infographic: Accuracy	The infographic is correctly drawn to scale (every element is in the same proportion).	There were some minor errors made in drawing the infographic to scale.	The infographic is not accurately scaled.
Infographic: Impact	The strategy that I chose (repeated images / bars on a grid / area model) makes sense for my ratio statement and has a strong impact.	The strategy that I chose makes sense but is not terribly impactful; another strategy might have been more effective at conveying my ratio statement.	The strategy that I chose did not make sense in this context nor did it have an impact.

Case Study: NASA Infographic

A day before the 1986 launch of the Challenger, a team of engineers urged NASA to postpone, arguing that launching in cold weather would be extremely dangerous. Parts called "O-rings", they said, were likely to crack in cold weather. A cracked O-ring could lead to a catastrophic explosion - and the death of every astronaut onboard.

Mission control asked the engineers to explain this risk with data.
To make their case, the engineers created an infographic that displayed outlines of 48 rockets, each representing a previous launch. Each rocket was labeled with the temperature at launch, with marks showing O-ring damage. These marks were explained in a legend, to help mission control understand what the damage was.

An infographic conveying O-ring damage in 48 rockets

Unfortunately, their infographic was very hard to read:

- Instead of sorting the rockets by temperature or amount-of-damage (the two variables the engineers claimed were related!), they were sorted by...the date they launched.
- The temperature at launch, which was the most important thing the engineers wanted mission control to see, was written sideways, in a tiny font that was difficult to read.
- The marks showing O-ring damage were hard to understand, and the legend that explained them was on a separate page!

The engineers created an infographic that failed to clearly explain the risk, and mission control made the decision to go ahead with the launch.
73 seconds into the flight, the rocket exploded over the coast of Florida, killing everyone onboard. The tragedy crippled NASA, which did not launch another rocket for nearly three years.
...The Challenger's explosion was, in the end, attributed to O-ring failure.

Which Silhouette Might Work?

Below are screenshot of the top google search results for 1) pilot transparent silhouette 2) pilot silhouette female 3) pilot silhouette African American.

1) Put an x on images that read as male only.
2) Put a diagonal line on images that read as female only.
3) Put a horizontal line (--) through the images that read as a white pilot.
4) Circle one silhouette from the remaining images that you think could possibly work as a generalized image of a pilot.
5) What do you Notice? What do you Wonder? \qquad

The Data Cycle

Data Science is all about asking questions of data.

- Sometimes the answer is easy to compute.
- Sometimes the answer to a question is already in the dataset - no computation needed.
- Sometimes the answer just sparks more questions!

Each question a Data Scientist asks adds a chapter to the story of their research. Even if a question is a "dead-end", it's valuable to share what the question was and what work you did to answer it!

- We start by Asking Questions after reviewing and closely observing the data. These questions can come from initial wonderings, or as a result of previous data cycle. Most questions can be broken down into one of four categories:
- Lookup questions - Answered by only reading the table, no further calculations are necessary! Once you find the value, you're done! Examples of lookup questions might be "How many legs does Felix have?" or "What species is Sheba?"
- Arithmetic questions - Answered by doing calculations (comparing, averaging, totaling, etc.) with values from one single column. Examples of arithmetic questions might be "How much does the heaviest animal weigh?" or "What is the average age of animals from the shelter?"
- Statistical questions - These often involve multiple steps to answer, and the answer isn't black and white. When we compare two statistics we are actually comparing two data sets. If we ask "are dogs heavier than cats?", we know that not every dog is heavier than every cat! We just want to know if it is generally true or generally false!
- Questions we can't answer - We might wonder where the animal shelter is located, or what time of year the data was gathered! But the data in the table won't help us answer that question, so as Data Scientists we might need to do some research beyond the data. And if nothing turns up, we simply recognize that there are limits to what we can analyze.
- Next, we Consider Data, by determining which parts of the data set we need to answer our question. Sometimes we don't have the data we need, so we conduct a survey, observe and record data, or find another existing dataset. Since our data is contained in a table, it's useful to start by asking two questions:
- What rows do we care about? - Is it all the animals? Just the lizards?
- What columns do we need? - Are we examining the ages of the animals? Their weights?
- Then, we Analyze the Data, by completing calculations, creating data displays, creating new tables, or filtering existing tables. The results of this step are calculations, patterns, and relationships.
- Are we making a pie chart? A bar chart? Something else?
- Finally, we Interpret the Data, by answering our original question and summarizing the process we took and the results we found. Sometimes the data cycle ends here, but often these interpretations lead to new questions... and the cycle begins again.

Which Question Type?

name	type1	hitpoint	attack	defense	speed
Bulbasaur	Grass	45	49	49	45
Ivysaur	Grass	60	62	63	60
Venusaur	Grass	80	82	83	80
Mega Venusaur	Grass	80	100	123	80
Charmander	Fire	39	52	43	80
Charmeleon	Fire	58	64	58	65
Charizard	Fire	78	84	78	80
Mega Charizard X	Fire	78	130	111	100
Mega CharizardY	Fire	78	104	78	100
Squirtle	Water	44	48	65	100
Wartortle	Water	59	63	80	43

Start by filling out ONLY the "Question Type" column of the table below.

Based on the Pokemon data above, decide whether each question is best described as:

- Lookup - Answered by only reading the table, no further calculations are necessary!
- Arithmetic - Answered by doing calculations (comparing, averaging, totalling, etc.) with values from one single column.
- Statistical - Best asked with "in general" attached, because the answer isn't black and white. If we ask "are dogs heavier than cats?", we know that not every dog is heavier than every cat! We just want to know if it is generally true or generally false !

	Question	Question Type	Which Rows?	Which Column(s)?
1	What type is Charizard?			
2	Which Pokemon is the fastest?			
3	What is Wartortle's attack score?			
4	What is the mean defense score?			
5	What is a typical defense score?			
6	Is Ivysaur faster than Venusaur?			
7	Is speed related to attack score?			
8	What is the most common type?			
9	Does one type tend to be faster than others?			
10	Are hitpoints (hp) similar for all Pokemon in the table?			
11	How many Fire-type Pokemon have a speed of 78 ?			

Data Cycle: Consider Data

Part 1: For each question below, identify the type of question and fill in the Rows and Columns needed to answer the question.

Ask Questions	How old is Boo-boo? What question do you have?	Question Type (circle one): Lookup Arithmetic Statistical
	Which Rows should we investigate?(All the rows, just the cats, fixed dogs, etc.) What Column(s) do we need? (age, weight-in-kilograms, weeks, etc.)	
Ask Questions	Are there more cats than dogs in the shelter? What question do you have?	Question Type (circle one): Lookup Arithmetic Statistical
	Which Rows should we investigate? (All the rows, just the cats, fixed dogs, etc.) What Column(s) do we need? (age, weight-in-kilograms, weeks, etc.)	

Part 2: Think of 2 questions of your own and follow the same process for them.

Ask Questions	What question do you have?	Question Type (circle one): Lookup Arithmetic Statistical
Consider Data	Which Rows should we investigate? (All the rows, just the cats, fixed dogs, etc.) What Column(s) do we need? (age, weight-in-kilograms, weeks, etc.)	
Ask Questions	What question do you have?	Question Type (circle one): Lookup Arithmetic Statistical
Consider Data	Which Rows should we investigate? (All the rows, just the cats, fixed dogs, etc.) What Column(s) do we need? (age, weight-in-kilograms, weeks, etc.)	

Data Cycle: Distribution of Fixed Animals

Using the Expanded Animals Starter File, let's make a pie-chart to see what we can learn about the distribution of fixed animals and what new questions it may lead us to.

Ask Questions	Are more animals fixed or unfixed? What question do you have?			Question Type (circle one): Lookup Arithmetic Statistical
	All the rows Which Rows should we investigate?(All the rows, just the cats, fixed dogs, etc.) fixed What Column(s) do we need? (age, weight-in-kilograms, weeks, etc.)			
Analyze Data	What code will make the table or display you want?			
	The chart shows that there are \qquad more/less/about the same number of	fixed animals \qquad unfixed animals.		
	Some new questions this raises include:			

Let's make a stacked-bar-chart to see if the ratio of fixed to unfixed animals differs by species.

Ask Questions	How does the ratio of fixed to unfixed animals differ by species? What question do you have?		Question Type (circle one): Lookup Arithmetic Statistical
	Which Rows should we investigate?(All the rows, just the cats, fixed dogs, etc.) What Column(s) do we need? (age, weight-in-kilograms, weeks, etc.)		
Analyze Data	What code will make the table or display you want?		
	The stacked bar chart shows that \qquad species have /most/some / a few/no animals \qquad unfixed animals. I also notice \qquad Some new questions this raises include:	more /the same number of/few	\qquad fixed

Data Cycle: Distribution of Categorical Columns

Open the Expanded Animals Starter File. Explore the distribution of a categorical column using pie-chart or bar-chart.

Explore the distribution of two categorical columns using stacked-bar-chart or multi-bar-chart.

Ask Questions	What question do you have?	Question Type (circle one): Lookup Arithmetic Statistical
	Which Rows should we investigate?(All the rows, just the cats, fixed dogs, etc.) What Column(s) do we need? (age, weight-in-kilograms, weeks, etc.)	
Analyze Data	What code will make the table or display you want?	
	When we break the distribution of \qquad down by \qquad - I notice that \qquad - I wonder \qquad	
	Another question Thave is...	

Question Types: Animals

A subset of the whole Animals Dataset is shown in the table below.

name	species	sex	age	fixed	legs	pounds	weeks
Sasha	cat	female	1	false	4	6.5	3
Sunflower	cat	female	5	true	4	8.1	6
Felix	cat	male	16	true	4	9.2	5
Sheba	cat	female	7	true	4	8.4	6
Billie	snail	hermaphrodite	0.5	false	0	0.1	3
Snowcone	cat	female	2	true	4	6.5	5
Wade	cat	male	1	false	4	3.2	1
Hercules	cat	male	3	false	4	13.4	2
Toggle	dog	female	3	true	4	48	1

Using this table - or the full dataset - write three questions of each type below.

- Lookup - Answered by only reading the table, no further calculations are necessary!
- Arithmetic - Answered by doing calculations (comparing, averaging, totalling, etc.) with values from one single column.
- Statistical - Best asked with "in general" attached, because the answer isn't black and white. If we ask "are dogs heavier than cats?", we know that not every dog is heavier than every cat! We just want to know if it is generally true or generally false !

	Type	Question
1	Lookup	
2	Lookup	
3	Lookup	
4	Arithmetic	
5	Arithmetic	
6	Arithmetic	
7	Statistical	
8	Statistical	
9	Statistical	

Data Cycle: Analyzing with Count

For each question below, complete the first three steps of the Data Cycle.
Once you know what code to write, type it into Pyret and try it out!

Ask Questions	How many of each species are at the shelter? What question do you have?	Question Type (circle one): Lookup Arithmetic Statistical
	Which Rows should we investigate? (All the rows, just the cats, fixed dogs, etc.) What Column(s) do we need? (age, weight-in-kilograms, weeks, etc.)	
Analyze Data	What code will make the table or display you want?	

Ask Questions	Question Type (circle one): Lookup Arithmetic Statistical
What question do you have?	

For the final Data Cycle, develop your own question and complete the remaining steps.

Ask Questions	What question do you have?	Question Type (circle one): Lookup Arithmetic Statistical
Consider Data	Which Rows should we investigate? (All the rows, just the cats, fixed dogs, etc.) What Column(s) do we need? (age, weight-in-kilograms, weeks, etc.)	
Analyze Data	What code will make the table or display you want?	

Probability, Inference, and Sample Size

How can you tell if a coin is fair, or designed to cheat you? Statisticians know that a fair coin should turn up "heads" about as often as "tails", so they begin with the null hypothesis: they assume the coin is fair, and start flipping it over and over to record the results.

A coin that comes up "heads" three times in a row could still be fair! The odds are 1-in-8, so it's totally possible that the null hypothesis is still true. But what if it comes up "heads" five times in a row? Ten times in a row?

Eventually, the chances of the coin being fair get smaller and smaller, and a Data Scientist can say "this coin is a cheat! The chances of it being fair are one in a million!"

By sampling the flips of a coin, we can infer whether the coin itself is fair or not.

Using information from a sample to draw conclusions about the larger population from which the sample was taken is called Inference and it plays a major role in Data Science and Statistics! For example:

- If we survey pet owners about whether they prefer cats or dogs, the null hypothesis is that the odds of someone preferring dogs are about the same as them preferring cats. And if the first three people we ask vote for dogs (a 1-in-8 chance), the null hypothesis could still be true! But after five people? Ten?
- If we're looking for gender bias in hiring, we might start with the null hypothesis that no such bias exists. If the first three people hired are all men, that doesn't necessarily mean there's a bias! But if 30 out of 35 hires are male, this is evidence that undermines the null hypothesis and suggests a real problem.
- If we poll voters for the next election, the null hypothesis is that the odds of voting for one candidate are the same as voting for the other. But if 80 out of 100 people say they'll vote for the same candidate, we might reject the null hypothesis and infer that the population as a whole is biased towards that candidate!

Sample size matters! The more bias there is, the smaller the sample we need to detect it. Major biases might need only a small sample, but subtle ones might need a huge sample to be found. However, choosing a good sample can be tricky!

Random Samples are a subset of a population in which each member of the subset has an equal chance of being chosen. A random sample is intended to be a representative subset of the population. The larger the random sample, the more closely it will represent the population and the better our inferences about the population will tend to be.

Grouped Samples are a subset of a population in which each member of the subset was chosen for a specific reason. For example, we might want to look at the difference in trends between two groups ("Is the age of a dog a bigger factor in adoption time v. the age of a cat?"). This would require making grouped samples of just the dogs and just the cats.

Finding the Trick Coin

Open the Fair Coins Starter File, which defines coin1, coin2, and coin3. Click "Run".
You can flip each coin by evaluating flip (coin1) in the Interactions Area (repeat for coins 2 and 3).
One of these coins is fair, one will land on "heads" 75% of the time, and one will land on "heads" 90% of the time. *Which one is which?*

1) Complete the table below by recording the results for five flips of each coin and totalling the number of "heads" you saw.

Convert the ratio of heads to flips into a percentage. Finally, decide whether or not you think each coin is fair based on your sample.

Sample	coin1		coin2		coin3	
1	H	T	H	T	H	T
2	H	T	H	T	H	T
3	H	T	H	T	H	T
4	H	T	H	T	H	T
5	H	T	H	T	H	T
\#heads	/5		/5		/5	
\% heads	\%		\%		\%	
fair?	Y	N	Y	N	Y	N

2) Record 15 more flips of each coin in the table below and total the number of "heads" you saw in all 20 flips of each coin.

Convert the ratio of total heads to total flips into a percentage. Finally, decide whether you think each coin is fair based on this larger sample.

Sample	coin1		coin2		coin3	
6	H	T	H	T	H	T
7	H	T	H	T	H	T
8	H	T	H	T	H	T
9	H	T	H	T	H	T
10	H	T	H	T	H	T
11	H	T	H	T	H	T
12	H	T	H	T	H	T
13	H	T	H	T	H	T
14	H	T	H	T	H	T
15	H	T	H	T	H	T
16	H	T	H	T	H	T
17	H	T	H	T	H	T
18	H	T	H	T	H	T
19	H	T	H	T	H	T
20	H	T	H	T	H	T
\#heads	/20		/20		/20	
\% heads	\%		\%		\%	
fair?	Y	N	Y	N	Y	N

3) Which coin was the easiest to identify? fair? 75\%? 90\%?
4) Why was that coin the easiest to identify? \qquad

Sampling and Inference

Open the Expanded Animals Starter File, and save a copy.

1) Evaluate the more-animals table in the Interactions Area. This is the complete population of animals from the shelter!

Here is a true statement about that population: The population is 47.7% fixed and 52.3% unfixed.

Type each of the following lines into the Interactions Area and hit "Enter".
random-rows(more-animals, 10)
random-rows(more-animals, 40)
2) What do you get? \qquad
3) What is the Contract for random-rows? \qquad
4) What does the random-rows function do? \qquad
5) In the Definitions Area,

- define small-sample to be random-rows(more-animals, 10)
- define large-sample to be random-rows(more-animals, 40)

6) Make a pie-chart for the animals in each sample, showing percentages of fixed and unfixed.

- The percentage of fixed animals in the entire population is $\mathbf{4 7 . 7 \%}$
- The percentage of fixed animals in small-sample is \qquad
- The percentage of fixed animals in large-sample is \qquad

7) Make a pie-chart for the animals in each sample, showing percentages for each species.

- The percentage of tarantulas in the entire population is roughly 5%
- The percentage of tarantulas in small-sample is \qquad
- The percentage of tarantulas in large-sample is \qquad

8) Click "Run" to direct the computer to generate a different set of random samples of these sizes. Make a new pie-chart for each sample, showing percentages for each species.

- The percentage of tarantulas in the entire population is roughly 5%
- The percentage of tarantulas in small-sample is \qquad
- The percentage of tarantulas in large-sample is \qquad

9) Which sample size gave us a more accurate inference about the whole population? Why?

Predictions from Samples

1) In the Definitions Area of the Expanded Animals Starter File, define the following samples:
```
tiny-sample = random-rows(more-animals, 10)
small-sample = random-rows(more-animals, 20)
medium-sample = random-rows(more-animals, 40)
large-sample = random-rows(more-animals, 80)
```

2) Click "Run" and make a pie-chart of the species in the tiny-sample. What animals are in the sample?

- Click "Run" for a new random tiny-sample, and make another pie-chart for species. What animals are in this sample?
- Click "Run" for a new random sample, and make yet another pie-chart for species. Based on these 3 samples, how many species do you think are at the shelter? \qquad
- Which is the most common species at the shelter?

3) What did you learn from taking multiple samples that you wouldn't have known if you'd only taken one?
4) Repeat the steps above, but for small-sample. What animals are in the sample?
5) Now that you've seen small-sample, how has your sense of the distribution of the species changed?
6) Now use medium-sample to make a pie-chart of the species. If there are about 400 animals at the shelter, how many of each species would you predict there to be?
7) Now use large-sample to make a pie-chart of the species. If there's anything you'd like to change about your prediction now that you've seen large-sample, record it here.
8) Let's see how accurate your prediction is... feel free to click "Run" and build a few more pie charts from your samples if you want to collect more information first! When you're ready, make a pie-chart of more-animals.

- Which predictions were closest?
- Which predictions were off?
- Were there any surprises?

9) In the real world, we usually don't have access to a whole dataset to check predictions against! How could we test...

- Every giraffe on the planet?
- Everyone who has ever come in contact with a covid-positive person?
- Every person who identifies as queer?
- What strategies can we use to make sure that predictions from samples are as close to accurate as possible?

Choosing Your Dataset

When selecting a dataset to explore, pick something that matters to you! You'll be working with this data for a while, so you don't want to pick something at random just to get it done.

When choosing a dataset, it's a good idea to consider a few factors:

1. Is it interesting?

Pick a dataset you're genuinely interested in, so that you can explore questions that fascinate you!
2. Is it relevant?

Pick a dataset that deals with something personally relevant to you and your community!
Does this data impact you in any way?
Are there questions you have about the dataset that mean something to you or someone you know?
3. Is it familiar?

Pick a dataset you know about, so you can use your expertise to deepen your analysis! You wouldn't be able to make samples of the Animals Dataset properly if you didn't know that some animals are much bigger or longer-lived than others.

Consider and Analyze

Fill in the tables below by considering the rows and columns you need. Look up the Contract for the display and record the Pyret code you'd need to make it. If time allows, type your code into code.pyret.org_(CPO) to see your display!

1) A pie-chart showing the species of animals from the shelter.

| Which Rows? | Which Column(s)? | What will you Create? |
| :--- | :--- | :--- | :--- |
| All the animals | | |

code: \qquad
2) A bar-chart showing the sex of animals from the shelter.

| Which Rows? | Which Column(s)? | What will you Create? |
| :--- | :--- | :--- | :--- |
| All the animals | | |

code:
3) A histogram of the number of pounds that animals weigh.

Which Rows?	Which Column(s)?	What will you Create?
All the animals		

code: \qquad
4) A box-p lot of the number of pounds that animals weigh.

| Which Rows? | Which Column(s)? | What will you Create? |
| :--- | :--- | :--- | :--- |
| All the animals | | |

code:
5) A scatter-plot, using the animals' species as the labels, age as the x-axis, and pounds as the y-axis.

| Which Rows? | Which Column(s)? | What will you Create? |
| :--- | :--- | :--- | :--- |
| All the animals | | |

code:
6) A scatter-plot, using the animals' name as the labels, pounds as the x-axis, and weeks as the y-axis.

| Which Rows? | Which Column(s)? | What will you Create? |
| :--- | :--- | :--- | :--- |
| All the animals | | |

code:

My Dataset

The \qquad dataset contains \qquad data rows.

1) I'm interested in this data because \qquad
2) My friends, family or neighbors would be interested because \qquad
3) Someone else should care about this data because \qquad
4) In the table below, write down what you Notice and Wonder about this dataset.

What do you NOTICE?	What do you WONDER?	Question
	Lookup	
	Arithmetic	
Statistical		
Can't Answer		
		Lookup
		Arithmetic
Statistical		
		Can't Answer
		Lookup
		Arithmetic
Statistical		
		Can't Answer
		Lookup

5) Consider each Wonder you wrote above and Circle what type of question it is.

Choose two columns to describe below.
6) \qquad , which contains \qquad data. Example values from this column include:
7) \qquad , which contains \qquad data. Example values from this column include:
\qquad column name categorical/quantitative

Data Cycle:Categorical Data

Use the Data Cycle to explore the distribution of one or more categorical columns using pie-charts and bar-charts, and record your findings.
What Ruestion do you have?

Datasets and Starter Files

Click through the datasets below. (Your teacher might also ask you to work with Global Food Supply [Dataset] [Starter File].) When you find one you'd like to use in Pyret, (1) click the "Starter File" link to open it in a new tab and (2) select "Save a copy" from the "File" menu.
\star Looking for a shorter list? We've starred a few good beginner datasets.

The Environment \& Health

Global Waste by Country 2019
World Cities' Proximity to the Ocean
[Dataset Starter File]

Earthquakes
[Dataset Starter File]

Air Quality, Pollution Sources \& Health in the U.S.
Health by U.S. County
[Dataset Starter File]
[Dataset Starter File]
[Dataset Starter File]
COVID in the U.S. by County
Arctic Sea Ice
[Dataset Starter File]
[Dataset Starter File]

Politics
Countries of the World [Dataset Starter File]
Gerrymandering
Marijuana Laws \& Arrests by State 2018
[Dataset Starter File]
[Dataset Starter File]
LAPD Arrests 2010-2019
NYPD Stop, Search \& Frisk 2019
Refugees 2018
State Demographics
U.S. Income
U.S. Jobs
U.S. Voter Turnout 2016
[Dataset Starter File]
[Dataset Starter File]
[Dataset Starter File]
[Dataset Starter File]
[Dataset Starter File]
[Dataset Starter File]
[Dataset Starter File]

Sports

Esports Earnings
MLB Hitting Stats
NBA Players
NFL Passing
NFL Rushing
[Dataset Starter File]
[Dataset Starter File]
[Dataset Starter File]
[Dataset Starter File]
[Dataset Starter File]
Entertainment
\star Movies
[Dataset Starter File]
IGN video game Reviews
International Exhibition of Modern Art
North American Pipe Organs
Pokemon
[Dataset Starter File]
[Dataset Starter File]
[Dataset Starter File]

Music

Education
College Majors

Evolution of College Admissions in California
[Dataset Starter File]

Nutrition

Soda, Coffee \& Other Drinks
Fast Food Nutrition [Dataset Starter File]

Would you like to contribute a dataset of your own, or is there something you'd like to change about one of ours?
About this Dataset
Rubric: Exploration Project (1)

Wow! \square	Getting There \square	Needs Improvement \square
I explained why this dataset is interesting to me, others like me, and why others should care about it. I considered why the dataset was collected, and what purpose it might serve. I correctly identified all rows, columns, and types in my dataset.	I explained why this dataset was interesting to me and at least one other person/group, and shared something about where it came from. I correctly identified most of the rows, columns, and types in my dataset.	I explained why this dataset was interesting to me , and shared something about where it came from. I correctly identified some rows, columns, and types in my dataset.

Histograms

To best understand histograms, it's helpful to contrast them first with bar charts.
Bar charts show the number of rows belonging to a given category. The more rows in each category, the taller the bar.

- Bar charts provide a visual representation of the frequency of values in a categorical column.
- There's no strict numerical way to order these bars.
- The count of red, yellow and blue balloons would make sense no matter what order they get presented in.
- But sometimes there's an order that makes sense. For example, it would be logical to show the count of t-shirt sizes in order of smallest to largest shirt.

Histograms show the number of rows that fall within certain intervals, or "bins", on a horizontal axis. The more rows that fall within a particular "bin", the taller the bar.

- Histograms provide a visual representation of the frequencies (or relative frequencies) of values in a quantitative column.
- Quantitative data can always be ordered, so the bars of a histogram always progress from smallest (on the left) to largest (on the right).
- When dealing with histograms, it's important to select a good bin size. If the bins are too small or too large, it is difficult to see the shape of the dataset. Choosing a good bin size can take some trial and error!

The shape of a dataset tells us which values are more or less common.

- In a symmetric dataset, values are just as likely to occur a certain distance above the mean as below the mean. Each side of a symmetric distribution looks almost like a mirror-image of the other.

- Some extreme values may be far greater or far lower than the other values in a dataset. These extreme values are called outliers.
- A dataset that is skewed left has a few values that are unusually low. The histogram for a skewed left dataset has a few data points that are stretched out to the left (lower) end of the x-axis.
- A dataset that is skewed right has a few values that are unusually high. The histogram for a skewed right dataset has a few data points that are stretched out to the right (higher) end of the x-axis.
- One way to visualize the difference between a histogram of data that is skewed left or skewed right is to think about the lengths of our toes on our left and right feet.

Much like the bar lengths of a histogram that is "skewed left", our left feet have smaller toes on the left and a bigger toe on the right.

Our right feet have the big toe on the left and smaller toes on the right, more closely resembling the shape of a histogram of "skewed right" data.

Summarizing Columns with Bar Charts \& Histograms

name	species	age	pounds
"Sasha"	"cat"	1	6.5
"Boo-boo"	"dog"	11	12.3
"Felix"	"cat"	16	9.2
"Nori"	"dog"	6	35.3
"Wade"	"cat"	1	3.2
"Nibblet"	"rabbit"	6	4.3
"Maple"	"dog"	3	51.6

1 How many cats are there in the table above?

2 How many dogs are there?

3 How many animals weigh between 0 and 20 pounds?

4 How many animals weigh between 20 and 40 pounds?

5 Are there more animals weighing $40-60$ pounds than $60-140$ pounds?

The two displays below both summarize this table. The display on the left is a Bar Chart, while the one on the right is a Histogram. What is similar about them? What is different?

Making Histograms

Suppose we have a dataset for a group of 50 adults, showing the number of teeth each person has:

Number of teeth	Count
0	5
22	1
26	1
27	1
29	3
20	3
32	3
	3

Draw a histogram for the table in the space below. For each row, find which interval (or "bin") on the x-axis represents the right number of teeth. Then fill in the box so that its height is equal to the sum of the counts that fit into that interval. One of the intervals has been completed for you.

Number of Teeth

Reading Histograms

Students watched 5 videos, and rated them on a scale of 1 to 10 . The average score for every video is the same (5.5).
Match the summary description (left) with the shape of the histogram of student ratings (right).

- The x-axis shows the score, and the y-axis shows the number of students who gave it that score.
- These axes are intentionally unlabeled - the shapes of the ratings distributions were very different! And that's the focus here.

Most of the students were fine with the video, but a couple of them gave it an unusually low rating.

Most of the students were okay with the video, but a couple students gave it an unusually high rating.

Students tended to give the video an average rating, and they weren't likely to stray far from the average.

Students either really liked or really disliked the video.

Reactions to the video were all over the place: high ratings and low ratings and inbetween ratings were all equally likely.

1

2

3

4

5

A

B

C

E

Choosing the Right Bin Size

Open your saved Animals Starter File, or make a new copy, and click "Run".
\# histogram :: ($\left.\frac{\text { Table }}{\text { table-name }}, \frac{\text { String }}{\text { labels }}, \frac{\text { String }}{\text { column-name }} \frac{\text { Number }}{\text { bin-size }}\right) ~->~ I m a g e ~$
Make a histogram for the "weeks" column in the animals-table, using a bin size of 10 and the "name" column for your labels.

1) How many animals took between 0 and 10 weeks to be adopted? \qquad
2) How many animals took between 10 and 20 weeks to be adopted? \qquad
Try some other bin sizes (be sure to experiment with bigger and smaller bins!)
3) What shape emerges? \qquad
4) What bin size gives you the best picture of the distribution? (Note: ideally your histogram should have between 5 and 10 bars) \qquad
5) Are there any outliers? If so, are they high or low?
6) How many animals took between 0 and 5 weeks to be adopted? \qquad
7) How many animals took between 5 and 10 weeks to be adopted? \qquad
8) What else do you Notice? What do you Wonder?
9) What was a typical time to adoption?

Data Cycle: Shape of the Animals Dataset

Use the Data Cycle to explore the distribution of one or more quantitative columns in Animals Starter File using histograms.
What is the shape of the age column of the Animals dataset?
What question do you have?
(circle one):
Lookup
Arithmetic
Statistical

Data Cycle:Shape of My Dataset

Use the Data Cycle to explore the distribution of one or more quantitative columns from your chosen dataset using histograms, and write down your findings.

Identifying Shape - Histograms

Describe the shape of the histograms on the left. Do your best to incorporate the vocabulary you've been introduced to.

Data Cycle:Shape of the Animals Dataset

Describe two histograms made from columns of the animals dataset.
The first question is provided. You'll need to come up with the second question on your own!

| Question Type
 (circle one):
 Lookup
 Arithmetic
 Statistical |
| :---: | :---: | :---: | :---: |
| What is the distribution of weight among all animals at the shelter? |

Ask Questions	What question do you have?
	Which Rows should we investigate? (All the rows, just the cats, fixed dogs, etc.) What Column(s) do we need? (age, weight-in-kilograms, weeks, etc.)
Analyze Data	What code will make the table or display you want?
Interpret Data	The histogram I created is for \qquad from \qquad The shape of this histogram is \qquad .There are peaks at \qquad and gaps at \qquad I notice that

Outliers: Should they Stay or Should they Go?

Tahli and Fernando are looking at a scatter plot showing the relationship between poverty and test scores at schools in Michigan. They find a trend, with low-poverty schools generally having higher test scores than high-poverty schools. However, one school is an extreme outlier: the highest poverty school in the state also has higher test scores than most of the other schools!

Tahli thinks the outlier should be removed before they start analyzing, and Fernando thinks it should stay. Here are their reasons:

Abstract

Tahli's Reasons: This outlier is so far from every other school - it has to be a mistake. Maybe someone entered the poverty level or the test scores incorrectly! We don't want those errors to influence our analysis. Or maybe it's a magnet, exam or private school that gets all the topperforming students. It's not right to compare that to non-magnet schools.

Fernando's Reasons:

Maybe it's not a mistake or a special school! Maybe the school has an amazing new strategy that's different from other schools!
Instead of removing an inconvenient data point from the analysis, we should be focusing our analysis on what is happening there.

Do you think this outlier should stay or go? Why? What additional information might help you make your decision?

Measures of Center

There are three values used to report the center of a dataset.

- Each of these measures of center summarizes a whole column of quantitative data using just one number:
- The mean of a dataset is the average of all the numbers.
- The median of a dataset is a value that is smaller than half the dataset, and larger than the other half. In an ordered list the median will either be the middle number or the average of the two middle numbers.
- The mode(s) of a dataset is the value (or values) occurring most often. When all of the values occur equally often, a dataset has no mode.

Which Measure of Center is most typical, depends on the shape of the data and the number of values.

- When a dataset is symmetric, values are just as likely to occur a certain distance above the mean as below the mean, and the median and mean are usually close together.
- When a dataset is asymmetric , the median is a more decriptive measure of center than the median.
- A dataset with left skew has a few values that are unusually low, which pull the mean below the median.
- A dataset with right skew has a few values that are unusually high, which pull the mean above the median.
- When a dataset contains a small number of values, the mode may be the most descriptive measure of center. (Note that a small number of values is not the same as a small number of data points !)

What Value is Typical?

If we plotted all 32 animals' weights as points on a number line, it would look something like this:

1) What do you Notice?
\qquad
\qquad
2) What do you Wonder?
\qquad
\qquad
3) What do you think is a typical value in this sample? Why?
\qquad
\qquad
\qquad
4) Identify another value someone might claim is typical in this sample. Why would they choose that value?
\qquad
\qquad
\qquad
5) Do you think there is a midpoint of this sample? Why or why not?
\qquad
\qquad
6) Do you think there is a value that's repeated more than any other value? Why or why not?
\qquad
\qquad

Summarizing Columns with Measures of Center

Summarizing the Pounds Column

Find the measures of center to summarize the \qquad pounds \qquad column of the Animals Starter File.

1) The three measures of center for this column are:

Mean (Average)	Median	Mode(s)
mean(animals-table, "pounds")	median(animals-table, "pounds")	modes(animals-table, "pounds")

2) To take the average of a column, we add all the numbers in that column and divide by the number of rows. Will that work for every column?
\qquad
\qquad
3) The mean is
higher than/lower than/about equal to
the median, which suggests the shape is
skewed right (high outliers)/skewed left (low outliers)/symmetric ${ }^{\circ}$
4) Which do you think is the most useful measure for this column of data? Why? \qquad
\star For which column(s) in the animals table do you think the modes might be a good measure of center? Why?

Summarizing the

Column

Find the measures of center to summarize the \qquad column of the Animals Starter File. a column of your choosing! . The three measures of center for this column are:

Mean (Average)	Median	Mode(s)

The mean is the median, which suggests the shape is higher than/lower than/about equal to skewed right (high outliers)/skewed left (low outliers)/symmetric ${ }^{\circ}$
\star Four animals weighing $5,5,10$, and 100 pounds will have an average mean of 30 pounds.
(because $5+5+10+100=120$ and $120 \div 4=30$)

Can you think of another set of four animals that would have the same average? How many sets can you come up with?
\qquad
\qquad
\qquad

Critiquing Written Findings

Consider the following dataset, representing the heaviest bench press (in Ibs) for ten powerlifters:
135, 95, 230, 135, 203, 55, 1075, 135, 110, 185

1) In the space below, rewrite this dataset in sorted order.
2) In the table below, compute the measures of center for this dataset.

Mean (Average)	Median	Mode(s)

3) The following statements are correct ... but misleading. Write down the reason why.

Statement	Why it's misleading
"More personal records are set at 135 Ibs than any other weight!"	

"The average powerlifter can bench press 235 lbs."
"With a median of 135 , that means that half the people in this group can't even lift 135 lbs."

Data Cycle Practice

Open the Animals Starter File. Complete both of the Data Cycles shown here, which have questions defined to get you started.

DataCycle Practice

Open your chosen dataset. Complete both of the Data Cycles shown here.

Mean, Median, Mode(s) Practice

Mean				
Find the mean of each dataset.				
17, 23, 25, 23, 22	11, 3, 7, 4, 5	11, 3, 7, 4	$5,7,11,11,7,7$	$2,3,5,4,3,7,4$

Median

Measures of Spread

Data Scientists measure the spread of a dataset using a five-number summary :

- Minimum: the smallest value in a dataset - it starts the first quarter
- Q1 (lower quartile): the number that separates the first quarter of the data from the second quarter of the data
- Q2 (Median) : the middle value (median) in a dataset
- Q3 (upper quartile): the value that separates the third quarter of the data from the last
- Maximum: the largest value in a dataset - it ends the fourth quarter of the data

The five-number summary can be used to draw a box plot.

- Each of the four sections of the box plot contains 25% of the data.
- If the values are distributed evenly across the range, the four sections of the box plot will be equal in width.
- Uneven distributions will show up as differently-sized sections of a box plot.
- The left whisker extends from the minimum to Q1.
- The box, or interquartile range, extends from Q1 to Q3. It is divided into 2 parts by the median. Each of those parts contains 25% of the data, so the whole box contains the central 50\% of the data.
- The right whisker extends from Q3 to the maximum.

The box plot above, for example, tells us that:

- The minimum weight is about 165 pounds. The median weight is about 220 pounds. The maximum weight is about 310 pounds.
- The data is not evenly distributed across the range:
- 1/4 of the players weigh roughly between 165 and 195 pounds
- $1 / 4$ of the players weigh roughly between 195 and 220 pounds
- $1 / 4$ of the players weigh roughly between 220 and 235 pounds
- $1 / 4$ of the players weigh roughly between 235 and 310 pounds
- 50% of the players weigh roughly between 165 and 220 pounds
- 50\% of the players weigh roughly between 195 and 235 pounds
- 50% of the players weigh roughly between 220 and 310 pounds
- The densest concentration of players' weights is between 220 and 235 pounds.
- Because the widest section of the box plot is between 235 and 310 pounds, we understand that the weights of the heaviest 25% fall across a wider span than the others.
- 310 may be an outlier
- the weights of the players weighing between 235 pounds 310 pounds could be evenly distributed across the range
- or all of the players weighing over 235 pounds may weigh around 310 pounds.

Summarizing Columns with Measures of Spread

Summarizing the Pounds Column

Get the values to summarize the spread of the \qquad pounds \qquad column of the Animals Starter File by typing box-plot(animals-table, "pounds") into the Interactions Area.

1) My five-number summary is:

Minimum	Q1	Median	Q3	Maximum

2) Draw a box plot from this summary on the number line below. Be sure to label the number line with consistent intervals.

3) The Range is: \qquad and the Interquartile Range(IQR) is: \qquad .
4) From this summary and box plot, I conclude that:

Summarizing the

Column

Choose another column to investigate by making a box-plot
5) My five-number summary is:

| Minimum | Q1 | Median | Q3 | Maximum |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |

6) Draw a box plot from this summary on the number line below. Be sure to label the number line with consistent intervals.

7) The Range is: \qquad and the Interquartile Range(IQR) is: \qquad .
8) From this summary and box plot, I conclude that:

Identifying Shape - Box Plots

Describe the shape of the box plots on the left. Do your best to incorporate the vocabulary you've been introduced to.

1

2

3

4

5

Matching Box Plots to Histograms

Students watched 5 videos, and rated them on a scale of 1 to 10 . For each video, their ratings were used to generate box plots and histograms. Match each box plot to the histogram that displays the same data.

1
A

2
B

3
C

D

5
E

Median
Minimum

Directions: Connect each item on this page to at least one other item by drawing an arrow and writing an explanation of how they
ә!!ıuеno

Data Cycle:Shape of the Animals Dataset

Open the Animals Starter File. Use the Data Cycle to explore the distribution of one or more quantitative columns using box plots.
What is the distribution of the weeks column from the animals dataset?

Data Cycle:Shape of My Dataset

Open your chosen dataset. Use the Data Cycle to explore the distribution of one or more quantitative columns using box plots, and write down your findings.
Question Type
(circle one):
Lockup
Arithmetic
Statistical

Reading Box Plots

A class of students took five different exams this year, and each distribution of their scores has been plotted in one of the five box plots below.
Match the summary description (left) with the shape of the box plot of student scores (right).

1

2

3

Most students did pretty well on this
A exam, but there were some mediocre scores and a handful of very low scores.

This exam featured one question worth a lot of points that many of the students
B got completely right, while many others got it completely wrong. Nobody actually got the "average" score.

A lot of students did poorly on this exam.
C Relatively few did just OK. Still, a bunch of students who really knew what they were doing completely aced it.

Performance on this exam resulted in a classic "bell curve" shape: most students

D
performed close to the average and scores far from the average in either direction were increasingly unlikely.

This was a hard exam. Most students did
E poorly, with scores tapering to the point where hardly anyone got an A.

Matching Box Plots to Histograms 2

Match each box-plot to the histogram that displays the same data.

B

D

E

Computing Standard Deviation

Here are the ages of different cats at the shelter: $1,7,1,1,2,2,3,1,5,7$

1) How many cats are represented in this sample? \qquad
The distribution of these ages is shown in the histogram below:

2) Describe the shape of this histogram.
3) What is the mean age of the cats in this dataset? \qquad
4) How many cats are 1 year old? 2 years old? Fill in the table below. The first column has been done for you.

age	1	2	3	4	5	6	7
count	4						

5) Draw a star to locate the mean on the x-axis of the histogram above.
6) For each cat in the histogram above, draw a horizontal arrow under the axis from your star to the cat's interval, and label the arrow with its distance from the mean. (For example, if the mean is 3 and a cat is in the 1 yr interval, your arrow would stretch from 1 to 3 , and be labeled with the distance "2")

To compute the standard deviation we square each distance and take the average, then take the square root of the average.
7) We've recorded the ages $(\mathrm{N}=10)$ shown in the histogram above in the table below, and listed the distance-from-mean for the four 1-yearold cats for you. As you can see, 1 year-olds are 2 years away from the mean, so their squared distance is 4 . Complete the table.

age of cat	1	1	1	1	2	2	3	5	7	7
distance from mean	2	2	2	2						
squared distance	4	4	4	4						

8) Add all the squared distances. What is their sum?
9) There are $\mathrm{N}=10$ distances. What is $\mathrm{N}-1$? \qquad Divide the sum by N-1. What do you get? \qquad
10) Take the square root to find the standard deviation! \qquad

The Effect of an Outlier

The histogram below shows the ages of eleven cats at the shelter:

1) Describe the shape of this histogram.
2) How many cats are 1 year old? 2 years old? Fill in the table below by reading the histogram. The first column has been done for you.

age	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
count	4															

3) What is the mean age of the cats in this histogram? \qquad
4) Draw a star to identify the mean on the histogram above.
5) For each cat in the histogram above, draw a horizontal arrow from the mean to the cat's interval, and label the arrow with its distance from the mean. (For example, if the mean is 2 and a cat is 5 years old, your arrow would stretch from 2 to 5 , and be labeled with the distance "3")
To compute the standard deviation we square each distance and take the average, then take the square root of the average.
6) Recorded the 11 ages shown in the histogram in the first row of the table below. For each age, compute the distance from the mean and the squared distance.

7) Add all the squared distances. What is their sum? \qquad
8) Divide the sum by $N-1$. What do you get? \qquad
9) Take the square root to find the standard deviation! \qquad
10) How did the outlier impact the standard deviation? \qquad

Data Cycle:Standard Deviation in the Animals Dataset

Open the Animals Starter File. The mean time-to-adoption is 5.75 weeks. Does that mean most animals generally get adopted in 4-6 weeks? Use the Data Cycle to find out. Write your findings on the lines below, in response to the question.

Ask Questions	Do the animals all get adopted in around the same length of time? What question do you have?	Question Type (circle one): Lookup Arithmetic Statistical
Consider Data	Which Rows should we investigate? (All the rows, just the cats, fixed dogs, etc.) What Column(s) do we need? (age, weight-in-kilograms, weeks, etc.)	
Analyze Data	If you only need some rows, define your filter function here (Need help? Use the Design Recipe!) If you need to make a new column, define your builder function here (Need help? Use the Design Recipe!) What code will make the table or display you want?	
Interpret Data	What did you find out? What can you infer? What - if any - new question(s) does this raise?	

Turn the Data Cycle above into a Data Story, which answers the question "If the average adoption time is 5.75 weeks, do all the animals get adopted in roughly 4-6 weeks?"

Data Cycle:Standard Deviation in My Dataset

Open your chosen dataset. Use the Data Cycle to find the standard deviation in two distributions, and write down your thinking and findings.

Computing Standard Deviation (2)

Here are ten different family incomes: $\$ 43 k, \$ 62 k, \$ 39 k, \$ 141 k, \$ 58 k, \$ 82 k, \$ 41 k, \$ 73 k, \$ 68 k, \$ 73 k$

1) Draw the distribution of these incomes by placing a dot on the number line below. If two families have the same income, put one dot on top of the other. Finally, draw a box plot on the number line, making sure to label the axis and show each quartile.

2) Describe the shape of this box-plot. \qquad
3) What is the mean income of the families in this dataset? \qquad
4) How many families earn $\$ 39 \mathrm{k}$? $\$ 43 \mathrm{k}$? Fill in the table below. The first column has been done for you.

income	$\$ 39 k$	$\$ 41 \mathrm{k}$	$\$ 43 \mathrm{k}$	$\$ 58 \mathrm{k}$	$\$ 62 \mathrm{k}$	$\$ 88 \mathrm{k}$	\$73k
$\$ 82 \mathrm{k}$	$\$ 141 \mathrm{k}$	count	1				

5) Draw a star to locate the mean on the number line above.

6) For each family on the number line you drew,

- Draw a horizontal arrow under the axis from the star you drew in \#5 to the dot for that family's income
- Label the arrow with its distance from the mean.
e.g. if the mean is $\$ 50 k$ and a family's income is $\$ 82 k$, your arrow would stretch from $\$ 50 k$ to $\$ 82 k$, and be labeled with the distance " $\$ 32 k$ "

To compute the standard deviation we square each distance and take the average, then take the square root of the average.
7) For each of the 10 incomes in the table below, list the distance-from-mean for each income, using the mean you computed above. Then fill in the squared distance in the next row to complete the table.

income (in 10s of thousands)	39	41	43	58	62	68	73	73	82	141
distance from mean										
squared distance										

8) Add all the squared distances. What is their sum?
9) There are $\mathrm{N}=10$ distances. What is $\mathrm{N}-1$? \qquad Divide the sum by N-1. What do you get? \qquad
10) Take the square root to find the standard deviation! \qquad

Matching Mean \& Standard Deviation to Data

In the table below, match the mean and standard deviation to the list of data it describes.

Mean: 4
StDev: 0
1

Mean: -5
StDev: ~5.66

Mean: 4
StDev: ~2.16

Mean: 4
StDev: ~2.65

Mean: -4
StDev: ~2.16

3
2
B

C
$1,2,3,4,5,6,7$
$-1,-9$
$0,2,3,4,5,6,8$

4, 4, 4, 4, 4

Correlations in Scatter Plots

Scatter Plots can be used to show a relationship between two quantitative columns.

Each row in the dataset is represented by a point, with one column providing the x-value and the other providing the y-value. The resulting
"point cloud" makes it possible to look for a relationship between those two columns.

- Form
- If the points in a scatter plot appear to follow a straight line, it suggests that a linear relationship exists between those two columns.
- Relationships may take other forms (u-shaped for example). If they aren't linear, it won't make sense to look for a correlation.
- Sometimes there will be no relationship at all between two variables.

Line of Best Fit

We graphically summarize a relationship by drawing a straight line through the data cloud, so that the vertical distance between the line and all the points taken together is as small as possible. This allows us to predict y -values (the response variable) based on x -values (the explanatory variable).

- Direction
- The correlation is positive if the point cloud slopes up as it goes farther to the right. This means larger y-values tend to go with larger x values.
- The correlation is negative if the point cloud slopes down as it goes farther to the right.
- Strength
- It is a strong correlation if the points are tightly clustered around a line. In this case, knowing the x-value gives us a pretty good idea of the y-value.
- It is a weak correlation if the points are loosely scattered and the y-value doesn't depend much on the x-value.

Points that do not fit the trend line in a scatter plot are called unusual observations.

r-value

We can summarize the correlation between two quantitative columns in a single number.

- The r-value will always fall between -1 and +1 .
- The sign tells us whether the correlation is positive or negative.
- Distance from 0 tells us the strength of the correlation.
- Here is how we might interperet some specific r-values:
- -1 is the strongest possible negative correlation.
- +1 is the strongest possible positive correlation.
- Omeans no correlation.
- ± 0.65 or ± 0.70 or more is typically considered a "strong correlation".
- ± 0.35 to ± 0.65 is typically considered "moderately correlated".
- Anything less than about ± 0.25 or ± 0.35 may be considered weak.

Note: These cutoffs are not an exact science! In some contexts an r-value of ± 0.50 might be considered impressively strong!

Correlation is not causation! Correlation only suggests that two column variables are related, but does not tell us if one causes the other. For example, hot days are correlated with people running their air conditioners, but air conditioners do not cause hot days!

Creating a Scatter Plot

1) The table below has some new animals!

Choose one and (paying careful attention to how the axes are labelled) plot their age/weeks values by adding a dot to the scatter plot on the right. Then write the animal's name next to the dot you made.

name	species	age	weeks
"Alice"	"cat"	1	3
"Bob"	"dog"	11	5
"Callie"	"cat"	16	4
"Diver"	"lizard"	2	24
"Eddie"	"dog"	6	9
"Fuzzy"	"cat"	1	2
"Gary"	"rabbit"	6	12
"Hazel"	"dog"	3	2

2) Plot the rest of the animals - one at a time - labeling each point as you go. After each animal, ask yourself whether or not you see a pattern in the data.
3) After how many animals did you begin to see a pattern? \qquad
4) Use a straight edge to draw a line on the graph that best represents the pattern you see, then circle the cloud of points around that line.
5) Are the points tightly clustered around the line or loosely scattered? \qquad
6) Does this display support the claim that younger animals get adopted faster? Why or why not?
7) Place points on the graph to create a scatter plot with NO relationship.

Exploring Relationships Between Columns

This page is designed to be used with the Animals Starter File. Log into code.pyret.org_(CPO) to open your saved copy.
As you consider each of the following relationships, first think about what you expect, then make the scatter plot to see if it supports your hunch.

1) How are the pounds an animal weighs related to its age?

- What would you expect? \qquad
- What did you learn from your scatter plot? \qquad

2) How are the number of weeks it takes for an animal to be adopted related to its number of legs?

- What would you expect? \qquad
- What did you learn from your scatter plot? \qquad
\qquad

3) How are the number of legs an animal has related to its age?

- What would you expect? \qquad
\qquad
- What did you learn from your scatter plot? \qquad
\qquad

4) Do any of these relationships appear to be linear (straight-line)?
\qquad
5) Are there any unusual observations?

Data Cycle: Relationships in the Animals Dataset

Open the Animals Starter File. Use the Data Cycle to search for relationships between columns. The first cycle has a question to get you started. What question will you ask for the second?

Data Cycle: Relationships in Your Dataset

Open your chosen dataset. Use the Data Cycle to search for relationships between columns.

Identifying Form, Direction and Strength

What do your eyes tell you about the Form, Direction, \& Strength of these displays?
Note: If the form is nonlinear, we shouldn't report direction - a curve may rise and then fall.

Reflection on Form, Direction and Strength

1) What has to be true about the shape of a relationship in order to start talking about the correlation's direction being positive or negative?
\qquad
\qquad
\qquad
2) What is the difference between a weak relationship and a negative relationship?
\qquad
\qquad
\qquad
3) What is the difference between a strong relationship and a positive relationship?
\qquad
\qquad
\qquad
4) If we find a strong relationship in a sample from a larger population, will that relationship always hold for the whole population? Why or why not?
\qquad
\qquad
\qquad
5) If two correlations are both positive, is the stronger one more positive (steeper slope) than the other?
\qquad
\qquad
\qquad
6) A news report claims that after surveying 10 million people, a positive correlation was found between how much chocolate a person eats and how happy they are. Does this mean eating chocolate almost certainly makes you happier? Why or why not?

Identifying Form and r-Values

What do your eyes tell you about the Form and Direction of the data? If the form is linear, approximate the r-value.

Reminder:

- -1 is the strongest possible negative correlation, and +1 is the strongest possible positive correlation
- O means no correlation
- ± 0.65 or ± 0.70 or more is typically considered a "strong correlation"
- ± 0.35 to ± 0.65 is typically considered "moderately correlated"
- Anything less than about ± 0.25 or ± 0.35 may be considered weak

Form:
r close to:

Form:
r close to:

Form:
r close to:

Form:
r close to:

Form: r close to:

Form:
r close to:

Correlation Does Not Imply Causation!

Here are some possible correlations and the nonsense headlines a confused journalist might report as a result. In reality, the correlations have absolutely no causal relationship; they come about because both of them are related to another variable that's lurking in the background.

Can you think of another variable for each situation that might be the actual cause of the correlation and explain why the headlines the paper ran based on the correlations are nonsense?

1) Correlation: For a certain psychology test, the amount of time a student studied was negatively correlated with their score! Headline: "Students who study less do better!"
\qquad
\qquad
\qquad
2) Correlation: Weekly data gathered at a popular beach throughout the year showed a positive correlation between sunburns and shark attacks.
Headline: "Sunburns Attract Shark Attacks!"
\qquad
\qquad
\qquad
3) Correlation: A negative correlation was found between rain and ski accidents.

Headline: "Be Safe - Ski in the Rain!"
\qquad
\qquad
\qquad
4) Correlation: Medical records show a positive correlation between Tylenol use and Death Rates.

Headline: "Tylenol use increases likelihood of dying!"
\qquad
\qquad
\qquad
5) Correlation: A positive correlation was found between hot cocoa sales and snow ball fights.

Headline: "Beware: Hot Cocoa Drinking encourages Snow Throwing!"

Correlations in the Animals Dataset

1) In the Interactions Area, create a scatter plot for the Animals Starter File, using "pounds" as the xs and "weeks" as the ys.

- Form: Does the point cloud appear linear or nonlinear? \qquad
- Direction: If it's linear, does it appear to go up or down as you move from left to right?
- Strength: Is the point cloud tightly packed, or loosely dispersed? \qquad
- Would you predict that the r-value is positive or negative? \qquad
- Will it be closer to zero, closer to ± 1, or in between? \qquad
- What r-value, does Pyret compute when you type r-value(animals-table, "pounds", "weeks")? \qquad
- Does this match your predictions? \qquad
\qquad
\qquad

2) In the Interactions Area, create a scatter plot for the Animals Dataset, using "age" as the xs and "weeks" as the ys.

- Form: Does the point cloud appear linear or nonlinear? \qquad
- Direction: If it's linear, does it appear to go up or down as you move from left to right?
- Strength: Is the point cloud tightly packed, or loosely dispersed? \qquad
- Would you predict that the r-value is positive or negative? \qquad
- Will it be closer to zero, closer to ± 1, or in between? \qquad
- What r-value does Pyret compute? \qquad
- Does this match your prediction? \qquad

3) Is this correlation stronger or weaker than the correlation for "pounds"? \qquad
4) What does that mean? \qquad
\qquad
\qquad
\qquad

Correlations in My Dataset

Identifying Form, Direction and Strength (Matching)

Match the description (left) with the scatter plot (right).
Note: The computer won't tell us if the relationship we see in a scatter plot is linear, so it's important to train our eyes to decide this ourselves. For linear relationships, we should train our eyes to assess their direction and get a feel for their strength, so that we have a sense of whether the computed results make sense.

Linear Regression

- We compute linear relationships to predict the future! Well...sort of. Given a dataset, like ages of animals v. how long before they're adopted, we try to compute the relationship between age and weeks so that we can predict how long a new animal might stay, based on their age.
- When we compute linear relationships, we're talking about straight-line patterns that appear on a scatter plot.
- A scatter plot has an x-axis and a y-axis. When looking for relationships, the y-axis is called the response variable, and the x-axis is called the explanatory variable. In our example, we are trying to figure out how much of the weeks variable is explained by the age variable.
- Linear Regression is a way of computing the line of best fit, which tries to draw a line as close as possible to all the points. (Want details? It minimizes the sum of the squares of the vertical distances from the points to the line. There's a reason we use computers to do this!)
- Slope is how much we predict the response variable will increase or decrease for each unit that the explanatory variable increases. In our example, a slope of 0.5 would mean "we predict that each additional year of age means an extra half-week in the shelter". (What would a slope of 3 mean?)
- Sample size matters! The number of data values is also relevant. We'd be more convinced of a positive relationship in general between cat age and time to adoption if a correlation of +0.57 were based on 50 cats instead of 5 .

Introduction to Linear Regression

How much can one point move the line of best fit?

Open the Interactive Regression Line (Geogebra). Move the blue point " P ", and see what effect it has on the red line.

1) Move P so that it is centered amongst the other points. Now move it all the way to top and bottom of the screen.
2) Move P so that it is far to the left or right of the other points. Now move it all the way to top and bottom of the screen. How - if at all - does the x-position of P impact on the line of best fit? \qquad
3) Could the regression line ever be above or below all the points (including the blue one you're dragging) ? Why or why not? \qquad
4) Would it be possible to have a line with more points on one side than the other? Why or why not? \qquad
5) What is the highest r-value you can get? \qquad Where did you place P ? \qquad , \qquad
6) What function describes the regression line with this value of P ?
7) What is the lowest r-value you can get? \qquad
$y=$ \qquad $x+$ \qquad
8) What function describes the regression line with this value of P ?

Predictions from Scatter Plots

9) Draw the line of best fit for age-v-weeks (on the left). Is this a strong correlation that will allow us to make a good prediction of an animal's adoption time just by knowing how old it is?
10) Draw the line of best fit for pounds-v-weeks (on the right). Is this a strong correlation that will allow us to make a good prediction of an animal's adoption time just by knowing how heavy it is?
11) Do either or both of the relationships appear to be linear?

Drawing Predictors

Remember what we learned about r-values...

$r=-1$	$r=-0.5$	$r=0$	$r=0.5$	$r=1$
perfect negative correlation	moderate negative association	no correlation	moderate positive association	perfect positive correlation

For each of the scatter plots below, draw a predictor line that seems like the best fit. Describe the correlation in terms of Direction and whether you think it is generally stronger or weaker, then estimate the r-value as being close to $-1,-0.5,0,+0.5$, or +1 .

Exploring Ir-plot

age

You should already have plotted lr-plot(animals-table, "name", "age", "weeks") in the Animals Starter File.

1) What is the predictor function? $y=$ \qquad $x+$ \qquad
2) What is the slope? \qquad
3) What is the y-intercept? \qquad
4) How long would our line of best fit predict it would take for a 5 year-old animal to be adopted? \qquad
5) What if they were a newborn, or just 0 years old? \qquad
6) Does it make sense to find the adoption time for a newborn using this predictor function? Why or why not?

weight

Make another Ir-plot, but this time use the animals' weight as our explanatory variable instead of their age.
7) How long would our line of best fit predict it would take for an animal weighing 21 pounds to be adopted? \qquad
8) What if they weighed 0.1 pounds? \qquad

cats

Make another lr-plot, comparing the age v. weeks columns for only the cats using the following code:

```
fun is-cat(r): r["species"] == "cat" end
```

lr-plot(filter(animals-table, is-cat), "name", "age", "weeks")
9) What is the predictor function? $y=$ \qquad $x+$ \qquad
10) What is the slope? \qquad
11) What is the y-intercept? \qquad
12) How does this line of best fit for cats compare to the line of best fit for all animals? \qquad
\qquad
\qquad
13) How long would our line of best fit predict it would take for a 5 year-old cat to be adopted? \qquad

Make another lr-plot, comparing the age v. weeks columns for only the dogs.

Making Predictions

1) About how many inches are kids in this dataset expected to grow per year? \qquad
2) At that rate, if a child were $45^{\prime \prime}$ tall at age eight, how tall would you expect them to be at age twelve? \qquad
3) At that rate, if a ten-year-old were 55 " tall, how tall would you expect them to have been at age 9 ? \qquad
4) Using the equation, how tall would you expect a seven-year-old child to be? \qquad
5) How many of the seven-year-olds in this sample are actually that height? \qquad
6) Using the equation, determine the expected height of someone who is...

7.5 years old	13 years old	6 years old	newborn	90 years old

7) For which ages is this predictor function likely to be the most accurate? Why? \qquad
\qquad
\qquad
8) For which ages is this predictor function likely to be the least accurate? Why? \qquad
\qquad
\qquad

Interpreting Regression Lines \& r-Values

Use the predictor function and r-value from each linear regression finding on the left to fill in the blanks of the corresponding description on the right.
sugar(m) $=-3.19 m+12$
$r=-0.05$
babies(u) $=0.012 u+7.8$
$r=0.01$
score $(w)=-15.3 w+1150$
$r=-0.65$
weight(n) $=1.6 n+160$
$r=0.12$

1	$\begin{aligned} & \operatorname{sugar}(m)=-3.19 m+12 \\ & r=-0.05 \end{aligned}$	For every additional Marvel Universe movie released each year, the average person is predicted to consume \qquad pounds of sugar! This correlation is \qquad
2	$\begin{aligned} & \text { height(s) }=1.65 s+52 \\ & r=0.89 \end{aligned}$	Shoe size and height are \qquad , correlated. If person A is one size bigger than person B, we predict that they will be roughly \qquad inches taller than person B as well.
3	$\begin{aligned} & \text { babies }(u)=0.012 u+7.8 \\ & r=0.01 \end{aligned}$	There is \qquad relationship found between the number [a strong, a moderate, almost no] of Uber drivers in a city and the number of babies born each year.
4	$\begin{aligned} & \text { score }(w)=-15.3 w+1150 \\ & r=-0.65 \end{aligned}$	The correlation between weeks-of-school-missed and SAT score is \qquad and . For [strong, moderate, weak, practically non-existent] \qquad every week a student misses, we predict a \qquad point \qquad in their SAT

There is a \qquad correlation between the number of streaming video services someone has, and how much they weigh. For each service, we expect them to be roughly \qquad pounds heavier.

Data Cycle: Animals Regression Analysis

Open the Animals Starter File. Before completing a data cycle on your own, read the provided example.

Ask Questions	What question do you have?	
	Which Rows should we investigate? (All the rows, just the cats, fixed dogs, etc.) What Column(s) do we need? (age, weight-in-kilograms, weeks, etc.)	
Analyze Data	What code will make the table or display you want?	
Interpret Data	I performed a linear regression on a sample of \qquad [dataset or subset] \qquad correlation between \qquad \qquad . I would predict that a 1 \qquad increase in [y-axis] [x-axis units] associated with a \qquad \qquad in \qquad	da \qquad is

Describing Relationships

A small sample of people were surveyed about their coffee drinking and sleeping habits. Does drinking coffee impact one's amount of sleep? NOTE: this data is made up for instructional purposes!

1) Describe the relationship between coffee intake and minutes of sleep shown in the data above.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2) Why is the y-axis of the display above misleading?

Data Cycle: Regression Analysis

Open your chosen dataset. Ask a question about your data to tell your Data Story.
What question do you have?

Ask Questions	What question do you have?	$\begin{gathered} \text { Question Type } \\ \text { (circle one): } \\ \text { Lookup } \\ \text { Arithmetic } \\ \text { Statistical } \\ \hline \end{gathered}$
	Which Rows should we investigate?(All the rows, just the cats, fixed dogs, etc.) What Column(s) do we need? (age, weight-in-kilograms, weeks, etc.)	
Analyze Data	What code will make the table or display you want?	
Interpret Data	I performed a linear regression on a sample of \qquad [dataset or subset] \qquad correlation between \qquad \qquad . I would predict that a 1 \qquad increase in [y-axis] [x-axis units] associated with a \qquad \qquad in \qquad	a is

Age vs. Height Explore

Open the Age vs. Height Starter File and click "Run" to interact with data from another sample of students.

1) Take a look at the code in the Definitions Area. What do you notice? What do you wonder?
\qquad
\qquad
\qquad
2) Build image-scatter-plot(h-table, "age", "height", dot). Try to visualize the line of best fit for just the blue dots. Then try to visualize the line of best fit for just the red stars. How do you think they would compare? Which line do you think would be steeper?
3) Make three linear regression plots comparing age and height, and record the results for each in the table below:

- The whole population: lr-plot(h-table, "gender-id", "age", "height")
- Females only: lr-plot(filter(h-table, is-f), "gender-id", "age", "height")
- Males only: lr-plot(filter(h-table, is-m), "gender-id", "age", "height")

Sample	rate of change		y-intercept
All			R value
Females			
Males			

4) What makes it difficult to compare these plots visually?

Rebuild lr-plot(filter(h-table, is-f), "gender-id", "age", "height"), adjust the window of the interactive plot using the numbers in the table below, and click Redraw.

x-min:	x-max:	y-min:	y-max:
6.5	12.5	45	70

Then, do the same for lr-plot(filter(h-table, is-m), "gender-id", "age", "height").
5) How do the plots compare now that their windows match?
6) What happens if you compare the students' height in inches to their height in centimeters by plotting
lr-plot(h-table, "gender-id", "height-cm", "height")?

Describing Relationships (2)

A small sample of people were surveyed about their satisfaction with their most recent purchase using a scale from 1 (very unsatisfied) to 5 (extremely satisfied).
NOTE: this data is made up for instructional purposes!

Dollars	Satisfaction
15.5	4
280	5
0.99	1
2.3	3
39	3
82	4
215	4
700	4
25	3
79	4
99.99	5
30	1
75	5
13	4
320	5
260	5
150	1
28	1
45	2
65	2

Describe the relationship between dollars spent and satisfaction shown in the data above.

Data Cycle: Regression Analysis 2

Open your chosen dataset. Ask a question about your data to tell your Data Story.
Ask Questions

Write your Data Story below:
I performed a linear regression on a sample of \qquad and found

Case Study: Ethics, Privacy, and Bias

These questions are designed to accompany one of the case studies provided in the Ethics, Privacy, and Bias lesson.

My Case Study is

1) Read the case study you were assigned, and write your summary here.
\qquad
\qquad
\qquad
\qquad
\qquad
2) Is this a good thing or a bad thing? Why?
\qquad
\qquad
\qquad
\qquad
\qquad
3) What are the arguments on each side?

Data Science used for this purpose is good because...
\qquad
\qquad
\qquad
\qquad
\qquad

Data Science used for this purpose is bad because...

Collecting Data

"In a survey of three hundred thousand people, the average height was less than four feet tall"

Politicians pass laws, shoppers choose brands, and countries go to war based on studies that sounds reliable. But is everything that seems reliable actually reliable? Can we really trust these studies?

There are many ways for a study to be flawed. Some flaws sneak in by accident, and data scientists have an obligation to look for these flaws and minimize them.

- A survey of people's favorite restaurants will be flawed, if it's only given to vegetarians.
- Some people might not fill out a survey that requires them to share their religion. This might change the results of the survey!
- A survey that lets people write whatever they want for "sex" might get some answers that are left blank, misspelled, or answers that aren't really about sex. Removing these responses from the dataset might change the results of the survey - especially if a certain group is more likely to leave it blank.

Being an ethical data scientist means making sure that every element of your study is designed to minimize bias in the data and the analysis.

Analyzing Survey Results When Data is Dirty

These questions are designed to accompany the Survey of Eighth Graders and their Favorite Desserts Starter File.

1) Paolo made a pie-chart of the dessert column and was suprised to discover that Fruit was the most popular dessert among 8th graders! Make the pie-chart. Why is this display misleading? How is the data "dirty"?
\qquad
\qquad
\qquad
\qquad
2) What ideas do you have for how the survey designer could have made sure that the data in the dessert column would have been cleaner?
\qquad
\qquad
\qquad
\qquad
3) Shani made a bar-chart of the gender-id column. In her analysis she stated that the most common gender identity among eighth graders in her class is male. Make the bar-chart. Do you agree? Why or Why Not?
\qquad
\qquad
\qquad
\qquad
4) Make a chart showing the ages of the 8th graders surveyed. What "dirty" data problems do you spot and how are they misleading?
\qquad
\qquad
\qquad
\qquad
5) What ideas do you have for how the survey designer could have made sure that the data in the age column would have been cleaner?
\qquad
\qquad
\qquad
\qquad

Dirty Data!

Open the New Animals Dataset and take a careful look. A bunch of new animals are coming to the shelter, and that means more data!
What do you Notice?
What do you Wonder?

There are many different ways that data can be dirty!

1. Missing Data - A column containing some cells with data, but some cells left blank.
2. Inconsistent Types - A column with inconsistent data types. For example, a years column where almost every cell is a Number, but one cell contains the string "5 years old".
3. Inconsistent Units - A column with consistent data types, but inconsistent units. For example, a weight column where some entries are in pounds but others are in kilograms.
4. Inconsistent Naming - Inconsistent spelling and capitalization for entries lead to them being counted as different. For example, a species column where some entries are "cat" and others are "Cat" will not give us a full picture of the cats.
1) Which animals' row(s) have missing data? \qquad
2) Which column(s) have inconsistent types? \qquad
3) Which column(s) have inconsistent units? \qquad
4) Which column(s) have inconsistent naming? \qquad
5) If we want to analyze this data, what should we do with the rows for Tanner, Toni, and Lizzy? \qquad
6) If we want to analyze this data, what should we do with the rows for Chanel and Bibbles? \qquad
7) If we want to analyze this data, what should we do with the rows for Porche and Boss? \qquad
\qquad
8) If we want to analyze this data, what should we do with the row for Niko? \qquad
9) If we want to analyze this data, what should we do with rows for Mona, Rover, Susie Q, and Happy? \qquad
10) Sometimes data cleaning is straightforward. Sometimes the problem is evident but the solution is less certain. For which questions were you certain of your data cleaning suggestion? For which were you less certain? Why? \qquad

Bad Questions Make Dirty Data

The Height v Wingspan Survey has lots of problems, which can lead to many kinds of dirty data: Missing Data, Inconsistent Types, Inconsistent Units and Inconsistent Language! Using the link provided by your teacher to your class' copy of the survey, try filling it out with bad data. Record the problems and make some recommendations for how to improve the survey!

| Q What examples of bad data were you able to submit? | How could the survey be improved to avoid bad data? | |
| :--- | :--- | :--- | :--- |
| A | | |
| B | | |

C

D

Designa Survey Rubric

	Wow!	Getting There	Needs Improvement
Brainstorming Phase and Survey Creation	We developed at least eight questions, and correctly identified which would be answered by categorical or quantitative data. We correctly determined which data type each question will produce, and created a digital version of our survey.	We developed eight questions, but weren't always sure which would be answered by categorical vs. quantitative data. We couldn't always determine which data type each question would produce, but we created a google form with our questions.	Our questions were often incorrectly categorized as categorical vs. quantitative, and we had a lot of confusion about which data type each question would produce. We did not finish making the digital survey.
Required Questions	We correctly indicated all questions that are required.	We sometimes indicated required questions.	We forgot to indicate required questions.
Question Format	We strategically used multiple choice answers, checkboxes, and dropdown menus when possible to prevent dirty data.	We missed one or more opportunities to use multiple choice answers, checkboxes, or dropdown menus to prevent dirty data.	We did not consider question format as a tool to prevent dirty data.
Description	Each question has appropriate and helpful instructions that help collect maximally clean data.	Most questions have helpful instructions and / or the instructions could be clearer.	We often forgot to include instructions with questions and / or our instructions were confusing.
Validation	When relevant, we specified answer data types and / or parameters to prevent dirty data.	We sometimes forgot to specify data types and / or parameters or we did not correctly specify data types.	We did not specify data types and / or parameters in order to guard against dirty data.
Survey Hacking	We outlined several examples of realistic, dirty data that we entered on another group's survey. We offered compelling and practical suggestions to guard against dirty data, and shared insights that could help us improve our own survey.	We outlined a few examples of dirty data that we entered on another group's survey, but the examples were not always realistic. Our suggestions to guard against dirty data needed to be more specific. We shared one insight to help us improve our own survey.	Our examples of dirty data were not realistic. Our suggestions to guard against dirty data were not useful or helpful to the other group. We did not demonstrate that we learned how to improve our own survey.
Address Bad Data Entered	We have modified our survey so that it would no longer accept any of the bad data entered during the hacking process.	We have modified our survey to account for most of the bad data entered during the hacking process.	We didn't address most of the concerns revealed through the hacking process.

Survey Brainstorming

Team Members:

1) What is your group's topic?
2) What data do you plan to gather? Be sure to include a mix of categorical and quantitative!
$\left.\left.\begin{array}{|l|l|l|l|}\hline \text { Question } & \text { Categorical or } \\ \text { Quantitative? }\end{array}\right] \begin{array}{c|c|}\text { Expected Data Type of } \\ \text { Response }\end{array}\right\}$
3) What displays would you be interested in seeing as part of your analysis?
\qquad
\qquad
\qquad
\qquad
4) What grouped samples might you want to explore separately?
(Just the teenagers, just the 8th graders, just the students with siblings, etc.)
\qquad
\qquad
\qquad
5) Are there any other questions you would need to ask as part of your survey in order to be able to identify the subgroups you want to study?

Categorical or
Quantitative?

Expected Data Type of
Response

Survey Hacking

Exchange surveys with another group and test the limits of their survey by trying to enter as much "dirty" data as you can!

1) Which survey are you testing out?
2) For each dirty data example, write down what you submitted and what suggestion you would have to help the other group guard against it.

Question			
Number		Dirty Data Entered	

3) What can you learn from seeing the holes in the survey you've been trying to hack that could help you to improve your own survey?

Looking up Rows and Columns

We can define names for values in Pyret, the same way we do in math:

```
name = "Shanti"
age = 16
logo = star(50, "solid", "red")
```

When looking up a data Row from a Table, programmers use the row-n function. This function takes a Table and a Number as its inputs. The numbers tell the computer which Row we want from the Table. Note: Rows are numbered starting at zero!
For example:

```
sasha = row-n(animals-table, 0) # define Sasha to be the first row
mittens = row-n(animals-table, 2) # define Mittens to be the third row
```

When we define these rows, it's more useful to name them based on their properties, rather than their identifiers:

```
cat-row = row-n(animals-table, 0) # Sasha is a cat
dog-row = row-n(animals-table, 10) # Toggle is a dog
```

When looking up a column from a Row, programmers use square brackets and the name of the column they want.
For example:

```
# these two lines do the same thing! We can use the defined name to simplify our code
row-n(animals-table, 0)["age"] # look up Sasha's age (in row 0)
cat-row["species"], # look up Sasha's age (using the defined name)
dog-row["age"]
# look up Toggle's age (using the defined name)
```


Lookup Questions

The table below represents four pets at an animal shelter:

pets-table	sex	age	pounds
name	"female"	3	48
"Toggle"	"male"	4	92
"Fritz"	"female"	6	35.3
"Nori"	"female"	3	51.6
"Maple"			

1) Match each Lookup Question (left) to the code that will give the answer (right).

"How much does Maple weigh?"	1	A	row-n(pets-table, 3)
"Which is the last row in the table?	2	B	row-n(pets-table, 2) ["name"]
"What is Fritz's sex?"	3	C	row-n(pets-table, 1) ["sex"]
"What's the third animal's name?"	4	D	row-n(pets-table, 3) ["age"]
"How much does Nori weigh?"	5	E	row-n(pets-table, 3) ["pounds"]
"How old is Maple?"	6	F	row-n(pets-table, 0)
"What is Toggle's sex?"	7	G	row-n(pets-table, 2) ["pounds"]
"What is the first row in the table?"	8	H	row-n(pets-table, 0) ["sex"]

"What is the first row in the table?" 8
H row-n(pets-table, 0)["sex"]
2) For each value on the left, write the Pyret expression that will produce that value on the right. The first one has been completed for you.

a.	"Maple"	row-n(pets-table, 3)["name"]
b.	"male"	
c.	4	
d.	48	
e.	"Nori"	

More Practice with Lookups

Consider shapes-table below, and the four value definitions that follow.

name	corners	is-round
"triangle"	3	false
"square"	4	false
"rectangle"	4	false
"circle"	0	true
shapeA $=$ row-n(shapes-table, 0) shapeB $=$ row-n(shapes-table, 1) shapeC $=$ row-n(shapes-table, 2) shapeD $=$ row-n(shapes-table, 3)		

1) Match each Pyret expression (left) to the description of what it evaluates to (right).
shapeD 1
shapeA 2 shapeB["corners"] 3 shapeC["is-round"] 4
shapeB["name"] 5

shapeA["corners"] 6

shapeD["name"] == "circle" 7

A Evaluates to 4

B Evaluates to the last row in the table

C Evaluates to "square"

D Evaluates to true

E Evaluates to false

F Evaluates to 3

G Evaluates to the first row in the table
2) For each value on the left, write the Pyret expression that will produce that value on the right. The first one has been completed for you.
a. "rectangle"
b. "square"
C. 4
d. 0
e. true

Defining Rows

Remember: rows start at index zero!

We've already given you two row definitions, cat-row and dog-row:
cat-row = row-n(animals-table, 0) \# Sasha is a cat
dog-row $=$ row-n(animals-table, 10) \# Toggle is a dog

1) Use the Animals Table to identify the index of a row containing...
a lizard \qquad
a rabbit \qquad
a fixed animal \qquad
a male animal \qquad
a female animal \qquad
a hermaphroditic animal \qquad
an unfixed animal \qquad
a young animal (<2 years) \qquad
an old animal (>10 years) \qquad
2) What code would you write to define lizard-row?
3) What code would you write to define rabbit-row?
4) What code would you write to define fixed-row?
5) What code would you write to define male-row?
6) What code would you write to define female-row?
7) What code would you write to define he rmaph rodite-row?
8) What code would you write to define young-row?
9) What code would you write to define old-row?

Add this code to your Animals Starter File! You'll want these rows for later!

Defining Functions

Functions can be viewed in multiple representations. You already know one of them: Contracts, which specify the Name, Domain, and Range of a function. Contracts are a way of thinking of functions as a mapping between one set of data and another. For example, a mapping from Numbers to Strings:
\# f : : Number -> String

Another way to view functions is with Examples. Examples are essentially input-output tables, showing what the function would do for a specific input:

In our programming language, we focus on the last two columns and write them as code:

```
examples:
    f(1) is 1 + 2
    f(2) is 2 + 2
    f(3) is 3 + 2
    f(4) is 4 + 2
end
```

Finally, we write a formal function definition ourselves. The pattern in the Examples becomes abstract (or "general"), replacing the inputs with variables. In the example below, the same definition is written in both math and code:

```
f(x)=x+2
    fun f(x): x + 2 end
```

Look for connections between these three representations!

- The function name is always the same, whether looking at the Contract, Examples, or Definition.
- The number of inputs in the Examples is always the same as the number of types in the Domain, which is always the same as the number of variables in the Definition.
- The "what the function does" pattern in the Examples is almost the same in the Definition, but with specific inputs replaced by variables.

The Great gt domain debate!

Kermit: The domain of gt is Number, String, String.
Oscar: The domain of gt is Number.
Ernie: I'm not sure who's right!
In order to make a triangle, we need a size, a color and a fill style...
but all we had to tell our actor was gt(20)...and they returned triangle(20, "solid", "green").
Please help us!

1) What is the correct domain for gt?
2) What could you tell Ernie to help him understand how you know?

Let's Define Some New Functions!

1) Let's define a function $r s$ to generate solid red squares of whatever size we give them!

If I say rs(5), what would our actor need to say?

Let's write a few more examples:
\qquad
What changes in these examples? Name your variable(s):
Let's define our function using the variable:
fun rs(\qquad): \qquad end
2) Let's define a function bigc to generate big solid circles of size 100 in whatever color we give them!

If Isay bigc("orange"), what would our actor need to say?

Let's write a few more examples:

bigc($) \rightarrow$
bigc($) \rightarrow$
bigc($) \rightarrow$

What changes in these examples? Name your variable(s): \qquad
Let's define our function using the variable:
fun bigc \qquad): end
3) Let's define a function ps to build a pink star of size 50 , with the input determining whether it's solid or outline!

Iflsay ps("outline"), what would our actor need to say?

Write examples for all other possible inputs:

$\operatorname{ps}(\square)$	\rightarrow
$\operatorname{ps}(\square) \rightarrow \square$	

What changes in these examples? Name your variable(s): \qquad
Let's define our function using the variable:
fun ps(\qquad): \qquad end
4) Add these new function definitions to your gt Starter File and test them out!

Let's Define Some More New Functions!

1) Let's define a function sun to write SUNSHINE in whatever color and size we give it!

IfIsay sun(5, "blue"), what would our actor need to say?

Let's write a few more examples:
sun (\qquad , \qquad) \rightarrow \qquad
sun(\qquad , \qquad) \rightarrow \qquad
sun \qquad , \qquad) \rightarrow \qquad
What changes in these examples? Name your variable(s): \qquad Let's define our function using the variable(s):
fun sun(\qquad , \qquad):
\qquad
2) Let's define a function me to generate your name in whatever size and color we give it!

IfIsay me(18, "gold"), what would our actor need to say?

Let's write a few more examples:
\qquad , \qquad) \rightarrow \qquad
me(\qquad - \qquad) \rightarrow \qquad
me(\qquad -, \qquad) \rightarrow \qquad
What changes in these examples? Name your variable(s): \qquad Let's define our function using the variable(s):
fun me(\qquad , \qquad):
3) Let's define a function gr to build a solid, green rectangle of whatever height and width we give it!

If I say $\operatorname{gr}(10,80)$, what would our actor need to say?

Let's write a few more examples:
\qquad -, \qquad) \rightarrow rectangle(\qquad , \qquad , "solid", "green")
$\operatorname{gr}($ \qquad , \qquad) \rightarrow rectangle(\qquad , \qquad , "solid", "green")
gr(\qquad ,) \rightarrow rectangle(\qquad , \qquad , "solid", "green")

What changes in these examples? Name your variable(s): \qquad Let's define our function using the variable(s):
fun $\operatorname{gr}($ \qquad , \qquad):
4) Add these new function definitions to your gt Starter File and test them out!

Describe and Define Your Own Functions!

1) Let's define a function to generate...

If I say \qquad , what would our actor need to say?

Let's write a few more examples:
\qquad
(\qquad) \rightarrow \qquad $($ \qquad -)

What changes in these examples? Name your variable(s): \qquad
Let's define our function using the variable.
fun \qquad (\qquad): \qquad end
2) Let's define a function \qquad to generate...

If I say \qquad , what would our actor need to say?

Let's write a few more examples:
(
\qquad
(
\qquad
\qquad) \rightarrow \qquad 1 \qquad)
\qquad) \rightarrow \qquad (\qquad)
1 \qquad) \rightarrow \qquad (\qquad

What changes in these examples? Name your variable(s): \qquad
Let's define our function using the variable.
fun \qquad (\qquad): end

3) Let's define a function

\qquad to generate...

If I say \qquad , what would our actor need to say? \qquad
Let's write a few more examples:

What changes in these examples? Name your variable(s): \qquad
Let's define our function using the variable.
fun \qquad (\qquad): \qquad end
4) Add your new function definitions to your gt Starter File and test them out!

$$
\begin{aligned}
& \text { examples: } \\
& \begin{array}{c}
f(5) \text { is } 5 / 2 \\
f(9) \text { is } 9 / 2 \\
f(24) \text { is } 24 / 2 \\
\text { end } \\
\\
\\
\\
\text { examples: } \\
\quad f(1) \text { is rectang } \\
\quad f(6) \text { is rectang } \\
\text { end }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { rectangle(1, 1, "outline", "red") } \\
& \text { rectangle(6, 6, "outline", "red") }
\end{aligned}
$$

v

end
examples:
$f($ "pink", 5) is $\operatorname{star(5,~"solid",~"pink")~}$
$f(" b l u e ", 8)$ is $\operatorname{star}(8$, "solid", "blue")
\mid
ω
N
C \# f : : Number \rightarrow Image
B \# f : : String \rightarrow Image

Matching Examples and Function Definitions

(1) Find the variables in gt and label them with the word "size".
examples:
gt(20) is triangle(20, "solid", "green") gt(50) is triangle(50, "solid", "green")
end
fun gt(size): triangle(size, "solid", "green") end
(2) Highlight and label the variables in the example lists below.
(3) Then, using gt as a model, match the examples to their corresponding function definitions.

Examples

Definition

```
examples:
    f("solid") is circle(8, "solid", "red")
    f("outline") is circle(8, "outline", "red")
end
```

examples:
$f(2)$ is $2+2$
$f(4)$ is $4+4$
$f(5)$ is $5+5$
end
examples:
f("red") is circle(7, "solid", "red")
f("teal") is circle(7, "solid", "teal")
end
examples:

examples:

$\mathrm{f}(3)$ is star(3, "outline", "red")
$f(8)$ is star(8, "outline", "red") end
end

examples:

```
    f("red") is star(9, "solid", "red")
    f("grey") is star(9, "solid", "grey")
    f("pink") is star(9, "solid", "pink")
end
```

3 C fun $f(c):$ star(9, "solid", $c)$ end

B
fun $f($ num $):$ num + num end
A
fun f(s): star(s, "outline", "red") end

Creating Contracts From Examples

Write the contracts used to create each of the following collections of examples. The first one has been done for you.

```
1) # big-triangle :: Number, String -> Image
```

```
examples:
```

examples:
big-triangle(100, "red") is triangle(100, "solid", "red")
big-triangle(100, "red") is triangle(100, "solid", "red")
big-triangle(200, "orange") is triangle(200, "solid", "orange")
big-triangle(200, "orange") is triangle(200, "solid", "orange")
end

```
end
```

2)

examples:
purple-square(15) is rectangle(15, 15, "outline", "purple")
purple-square(6) is rectangle(6, 6, "outline", "purple")
end
3)
examples:
$\operatorname{sum}(5,8)$ is $5+8$
$\operatorname{sum}(9,6)$ is $9+6$
$\operatorname{sum}(120,11)$ is $120+11$
end
4)

examples:

banner("Game Today!") is text("Game Today!", 50, "red")
banner("Go Team!") is text("Go Team!", 50, "red")
banner("Exit") is text("Exit", 50, "red")
end
5)
examples:
twinkle("outline", "red") is star(5, "outline", "red")
twinkle("solid", "pink") is star(5, "solid", "pink")
twinkle("outline", "grey") is star(5, "outline", "grey")
end
6)

```
examples:
    half(5) is 5 / 2
    half(8) is 8 / 2
    half(900) is 900 / 2
end
```

7)

examples:

Spanish(5) is "cinco"
Spanish(30) is "treinta"
Spanish(12) is "doce"
end

Contracts, Examples \& Definitions-bc

We've already found the Contract for gt, generated Examples and described the pattern with a Function Definition. Let's review our process, beginning with the Word Problem.

Directions: Define a function called gt, which makes solid green triangles of whatever size we want.

Contract and Purpose Statement

Every contract has three parts...

$\#$	$g t::$	Number
function name	Domain	$->$
Examples	Image	

Write some examples, then circle and label what changes...
examples:

Definition

Write the definition, giving variable names to all your input values...

triangle(size, "solid", "green")
end

Now, let's apply the same steps to think through a new problem!
Directions: Define a function called bc, which makes solid blue circles of whatever radius we want.

Contract and Purpose Statement

Every contract has three parts...

Examples

Write some examples, then circle and label what changes...

examples:

function name \quad function name \quad is

Definition

Write the definition, giving variable names to all your input values...
fun \qquad):
end what the function does with those variable(s)

Contracts, Examples \& Definitions - Stars

Directions: Define a function called sticker, which consumes a color and draws a solid 50px star of the given color.

Contract and Purpose Statement

Every contract has three parts...
\# \qquad :: \qquad -> \qquad

Examples

Write some examples, then circle and label what changes...

examples:

function name \quad function name \quad is \quad is \quad what the function produces

Definition

Write the definition, giving variable names to all your input values...
fun function name \quad variable(s)

Directions: Define a function called gold-star, which takes in a radius and draws a solid gold star of that given size.

Contract and Purpose Statement

Every contract has three parts...

Examples

Write some examples, then circle and label what changes... examples:

Definition

Write the definition, giving variable names to all your input values...

\qquad
end what the function does with those variable(s)

Contracts, Examples \& Definitions - Name

Directions: Define a function called name-color, which makes an image of your name at size 50 in whatever color is given.

Contract and Purpose Statement

Every contract has three parts...
\# \qquad :: \qquad -> \qquad

Examples

Write some examples, then circle and label what changes...

examples:

Definition

Write the definition, giving variable names to all your input values...
function name
end

Directions: Define a function called name-size, which makes an image of your name in your favorite color (be sure to specify your name and favorite color!) in whatever size is given.

Contract and Purpose Statement

Every contract has three parts...

$\# \#$ function name	$:$	Domain	$->$
Examples			
Write some examples, then circle and label what changes...			

Write some examples, then circle and label what changes... examples:

Definition

Write the definition, giving variable names to all your input values...
\qquad):
what the function does with those variable(s)
end

Do the Examples Have the Same Contracts?

For each pair of Examples below, decide whether the two examples have the same Contract. If they do, fill in the Contract in the space provided. If not, write a few words explaining how you know their contracts aren't the same.

```
1)
examples:
    mystery(30) is 30 * 50
    mystery(10) is text("Welcome!", 10, "darkgreen")
end
```

2)

examples:
mystery(30, 40) is $40-(2$ * 30$)$
mystery(10, 15) is $15-(2$ * 10$)$
end
3)
examples:
mystery("New York") is text("New York", 20, "red")
mystery(20) is text("New York", 20, "red")
end
4)

examples:

mystery("green", 32) is circle(32, "outline", "green")
mystery(18, "green") is circle(18, "outline", "green")
end
5)
examples:
mystery(6, 9, 10) is $6 /(9+10)$
mystery(3, 7) is $3 /(7+10)$
end
6)

```
examples:
    mystery("red", "blue") is text("blue", 25, "red")
    mystery("purple", "Go Team!") is text("Go Team!", 25, "purple")
end
```


Do the Examples Have the Same Contracts? (2)

For each pair of Examples below, decide whether the two examples have the same Contract. If they do, fill in the Contract in the space provided. If not, write a few words explaining how you know their contracts aren't the same.

```
1)
examples:
    mystery(triangle(70, "solid", "green")) is triangle(140, "solid", "green")
    mystery(circle(100, "solid", "blue")) is circle(200, "solid", "blue")
end
```

2)

examples:
mystery("red") is triangle(140, "solid", "red")
mystery("blue", "circle") is circle(140, "solid", "blue")
end
3)
examples:
mystery("+", 4, 5) is $4+5$
mystery("sqrt", 25) is num-sqrt(25)
end
4)

examples:

mystery("circle", 4) is num-pi * num-sqr(4)
mystery("square", 5) is num-sqr(5)
end
5)
examples:
mystery("dog") is 3
mystery("cat") is "kitten"
end
6)

```
examples:
    mystery("dog") is 3
    mystery("kitten") is 6
end
```


Matching Examples and Contracts (2)

Match each Example on the left with its Contract on the right. NOTE: Multiple examples may match to the same Contract!

Contract

```
examples:
    match(circle(10, "solid", "green")) is
rotate(37, circle(10, "solid", "green"))
end
```


examples:

match(triangle(20, "solid", "blue"), 3) is scale(3, triangle(20, "solid", "blue"))
end

```
examples:
    match(circle(20, "outline", "gold")) is
rotate(37, circle(20, "outline", "gold"))
end
```


examples:

 match(30, "red") is 30 + string-length("red"
)
end

examples:

match(circle(10, "solid", "orange"), 22) is scale(22, circle(10, "solid", "orange"))
end

examples:

match(10, "blue") is 10 + string-length(
"blue")
end

examples:

match(5, star(20, "solid", "red")) is rotate (90-5, star(20, "solid", "red")) end

B \# match :: Image, Number -> Image

C \# match :: Image -> Image

D \# match :: Number, String -> Number

Matching Examples and Contracts (3)

Match each Example on the left with its Contract on the right. NOTE: Multiple examples may match to the same Contract!

Contract

examples:

match(1.5) is "greater than 1"
end

```
examples:
    match(24) is star(24 * 2, "outline",
"purple")
end
```


examples:

match(string-length("tabletop")) is "8" end

examples:

match(star(20, "outline", "red"), 3) is 3 * image-height(star(20, "outline", "red")) end

examples:

match(circle(10, "solid", "silver"), 16) is
16 * image-height(circle(10, "solid", "silver"))
end

examples:

match("triangle", "blue") is triangle(40,
"outline", "blue")
end

```
examples:
    match(30) is star(30 * 2, "outline",
"purple")
end
```


examples:

match(string-length("coffee"), string-length
("tea")) is 6 + 3
end

A \# match : : Number -> String

B \# match :: Number -> Image

C \# match :: Number, Number -> Number

D \# match :: String, String -> Image

E Number :: Images, Number -> Number

‘suо！ұешлоsuед омұ ло әио 人ןио рәрnןэи！ səjduexə KW＇sıoגлə səənpoıd әроэ Km Buluuny	＇suo！̣ешлояsueдд ом7 	 	uolss！uqns mencold NW
＇ł！SSəયppe 	＇！！○ әسos pəssəappe 		Мә！＾әу дәәd
 	 	 ұечм әи！шләұәр оұ sұวедұиоэ pəsn әл，әsneวəq słndu！əıom до әuo pue＇doł ә૫ł łe uo！pount e sey әрл！ 	ио！ұепןе＾ヨ ¢о әృد．！
 	 	 łseə fe pue uo！fount ədeys әuo 子seə łe әsoyว I	uolpoung 1no人 8ిu！u®！！รəロ
ор КләұsКш pue әлеnbs－иоолешұечм 	 „о ภั！	＇әроэ u！syеәдqәu！！pue 人цеәр рие әлеnbs－иоолешио рәұәәృәл	Nph7s xuo！poun」
ұиәшəлолdш｜spəәN	วлวчเ ${ }^{\text {¢ }}$	¡MOM	

Functions Study

Function Refresher 1: maroon-square

Open the Functions Study Starter File and "Save a Copy". Before you click "Run", answer questions 1-3 by reading the Contract, Examples, and Definition for the function maroon-square in the Definitions area.

1) What is the Domain of maroon-square ?
2) What is the Range of maroon-square ?
3) What do you expect the function maroon-square to do?
4) Click "Run". What do you learn about examples-block-1 when you click "Show Details"?
5) What happens when you type maroon-square(20) in your Interactions Area and hit enter? \qquad
6) Change the code in the Definitions Area so that all 3 tests in examples-block-1 pass when you click "Run" (and save your changes). What did you change? \qquad

Function Refresher 2: mystery

7) What are the names of the 3 defined values at the beginning of this section? \qquad

Let's examine what happens when we use each of those values as inputs for mystery .

- Type small-yt into the Interactions Area and hit enter.
- Then, test out mystery(small-yt).

8) What do you Notice? What do you Wonder? \qquad
9) What do you expect to happen when you test hello-text and mystery(hello-text) ? \qquad

Note: If you like, you can run mystery with any image-producing function!
10) In your own words, describe how the function mystery transforms its input. \qquad
\qquad
11) Take another look at the EXAMPLES section. Notice how the programmer made use of indentation and new lines. Why do you think they wrote the code that way? \qquad
\qquad
\qquad

Designing Your Function

In this project, you will develop and define a function of your own! This function must take in a shape and manipulate it using at least three transformations. This is the planning sheet. You will also create, save, and share a Pyret file with your teacher.

1) Put a checkmark by each of the shape functions that you plan to use in your personal function. You must choose at least one. If you plan to use a function multiple times, you can add additional checkmarks next to it.

\square circle	\square ellipse	\square text	\square rectangle
\square rhombus	\square triangle	\square radial-star	

2) Put a checkmark by each of the transformation functions you plan to use in your personal function. You must choose at least three. If you plan to use a function multiple times, you can add additional checkmarks next to it.

\square above	\square beside	\square flip-horizontal	\square flip-vertical
\square rotate	\square scale	\square overlay	\square put-image

3) What do you want your function to do?

- Example: I want my function to take in a shape, double its size, turn it upside down, and center it on a solid blue square that's 100 pixels wide.
- I want my function to take in a shape, and then: \qquad
\qquad

4) Draw a sketch of the image you want your function to produce given each of the inputs below.
```
input: triangle(30, "solid", "pink") input: rectangle(20, 50, "outline", "yellow")
```


Represent Your Function with a Circle of Evaluation

1) Draw a Circle of Evaluation to show how you will compose the functions you selected on Designing Your Function in order to create your function. Hint: You can use shape as the variable name for the images that your function will take in.

Peer Review

2) Swap papers with a partner. Write your name so your teacher knows who is reviewing this function. \qquad
3) Did your partner put a function at the top of each Circle? If not, explain what the problem is. \qquad
\qquad
\qquad
4) Are all of the inputs to each function in the correct order? If not, which contracts does your partner need to revisit to solve the problem?
\qquad
\qquad
\qquad
5) What do you think your partner's function is trying to do? \qquad
\qquad
\qquad
6) Ask your partner to give you their copy of Designing Your Function. Look at their responses for numbers 3 and 4 . Do you think the code represented by the Circle of Evaluation above will do what they want it to do? If not, tell them what you think needs to change. \qquad
\qquad
\qquad

Coding Your Function

Translate Your Circle of Evaluation to Code

1) Code:

Add Examples and Define Your Function

Open My Function Starter File on your computer. Select "File", then "Save a Copy."
2) At the top of the starter file we've defined two functions for you to write examples with.

- What shape will pt make? \qquad
- What shape will yr make?

3) Define a third image value called img to make a shape of your choosing and then click "Run" to load the program with your new definition.

- What shape will img make?

4) Test out the code you wrote in question 1 in the Interactions Area and hit Enter/return.

- If you get an error, or if you are not getting the result that you expected, try again until it works and describe one adjustment that you made. \qquad

5) Once the code is working how you want it to, it's time to add it to the EXAMPLES in the definitions area.

- Type my-function (shape) is and then paste in the code you just entered.
- Follow the pattern to add examples using pt and yr.
- Remember to use linebreaks and indentation to make your code easy to read. If you're not sure how to do that, look at the EXAMPLES in the Functions Study Starter File.

6) After entering your examples, click "Run" to confirm that your tests passed in Pyret, with no error messages. You should see the message, "Looks shipshape, all 3 tests passed, mate!"
7) Define my-function in Pyret. (If you don't remember how to define a function, you can refer to the Functions Study Starter File.)

Peer Review

Save your program. Then swap papers and computers with your partner so they can view your Pyret file.
8) Write your name on the line so that your teacher knows who is reviewing this function. \qquad
9) Did your partner write 3 different and correctly formatted examples?

If yes, write "Exmaples look good to me!". If not, describe what you notice needs to be fixed.
10) When you click "Run", do you see the message, "Looks shipshape, all 3 tests passed, mate!"? If not, work with your partner to find and fix the problem. Describe the issue below or write "No errors!".

Publish and Submit Your Program

11) Save your program. Go to "Publish", and copy the link that appears. Follow your teacher's instructions for submitting the link.

Solving Word Problems

Being able to see functions as Contracts, Examples or Definitions is like having three powerful tools. These representations can be used together to solve word problems! We call this The Design Recipe.

1) When reading a word problem, the first step is to figure out the Contract for the function you want to build. Remember, a Contract must include the Name, Domain and Range for the function!
2) Then we write a Purpose Statement, which is a short note that tells us what the function should do. Professional programmers work hard to write good purpose statements, so that other people can understand the code they wrote! Programmers work on teams; the programs they write must outlast the moment that they are written.
3) Next, we write at least two Examples. These are lines of code that show what the function should do for a specific input. Once we see examples of at least two inputs, we can find a pattern and see which parts are changing and which parts aren't.
4) To finish the Examples, we circle the parts that are changing, and label them with a short variable name that explains what they do.
5) Finally, we define the function itself! This is pretty easy after you have some examples to work from: we copy everything that didn't change, and replace the changeable stuff with the variable name!
given the weight of Rex's food Max's turtle, Rex, eats 5 pounds less per week than his turtle, Harry, who is
2 inches taller. Write a function to calculate how much food Harry eats, Δ D Consume the pounds of food Rex eats and divide by 5

Adrienne's raccoon, Rex, eats 5 more pounds of food each week than her
pet squirrel, Lili, who is 7 years older. Write a function to determine how 2
much Lili eats in a week, given how much Rex eats.

Alejandro's rabbit, Rex, poops about $1 / 5$ of what it eats. His rabbit hutch is
10 cubic feet. Write a function to figure out how much rabbit poop
Alejandro will have to clean up depending on how much Rex has eaten.
ω
food that Rex usually consumes in the same amount of time. estimate for how many pounds of food Xavier will eat, given the amount of dogfood for the household yet. Write a function that generates an 1 Annie got a new dog, Xavier, that eats about 5 times as much as her little

Writing Examples from Purpose Statements

We've provided contracts and purpose statements to describe two different functions. Write examples for each of those functions.

Contract and Purpose Statement

Every contract has three parts...
\# triple::
\# Consumes a Number and triples it.
Examples
Write some examples, then circle and label what changes...
examples:
function name
function name

Contract and Purpose Statement

Every contract has three parts...

\# upside-down:: function name\quad Image	Domain	->
\# Consumes an image, and turns it upside down by rotating it 180 degrees.	Range	
Examples		

Write some examples, then circle and label what changes...

examples:

Fixing Purpose Statements

Beneath each of the word problems below is a purpose statement (generated by ChatGPT!) that is either missing information or includes unnecessary information.

- Write an improved version of each purpose statement beneath the original.
- Then, explain what was wrong with the ChatGPT-generated Purpose Statement.

1) Word Problem: The New York City ferry costs $\$ 2.75$ per ride. The Earth School requires two chaperones for any field trip. Write a function fare that takes in the number of students in the class and returns the total fare for the students and chaperones.

ChatGPT's Purpose Statement: Take in the number of students and add 2.
Improved Purpose Statement: \qquad

Problem with ChatGPT's Purpose Statement: \qquad
\qquad
2) Word Problem: It is tradition for the Green Machines to go to Humpy Dumpty's for ice cream with their families after their soccer games. Write a function cones to take in the number of kids and calculate the total bill for the team, assuming that each kid brings two family members and cones cost \$1.25.

ChatGPT's Purpose Statement: Take in the number of kids on the team and multiply it by 1.25 .
Improved Purpose Statement: \qquad

Problem with ChatGPT's Purpose Statement: \qquad
3) Word Problem: The cost of renting an ebike is $\$ 3$ plus an additional $\$ 0.12$ per minute. Write a function ebike that will calculate the cost of a ride, given the number of minutes ridden.

ChatGPT's Purpose Statement: Take in the number of minutes and multiply it by 3.12.
Improved Purpose Statement: \qquad

Problem with ChatGPT's Purpose Statement: \qquad
4) Word Problem: Suleika is a skilled house painter at only age 21. She has painted hundreds of rooms and can paint about 175 square feet an hour. Write a function pa int that takes in the number of square feet of the job and calculates how many hours it will take her.

ChatGPT's Purpose Statement: Take in the number of square feet of walls in a house and divide them by 175 then add 21 years. Improved Purpose Statement: \qquad

Problem with ChatGPT's Purpose Statement:

Word Problem: rocket-height

Directions: A rocket blasts off, and is now traveling at a constant velocity of 7 meters per second. Use the Design Recipe to write a function rocket-height, which takes in a number of seconds and calculates the height.

Contract and Purpose Statement

Every contract has three parts...
\#
 :: $:$. Domain -> \qquad
\#
what does the function do?
Examples
Write some examples, then circle and label what changes...

examples:

Write the definition, giving variable names to all your input values...
fun \qquad 1 \qquad):
end what the function does with those variable(s)

Writing Examples from Purpose Statements (2)

We've provided contracts and purpose statements to describe two different functions. Write examples for each of those functions.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:
$\left.\begin{array}{l}\text { function name } \\ \text { (_input(s) }\end{array}\right)$ is

Contract and Purpose Statement

Every contract has three parts...

\# product-squared:: function name	Number, Number	Domain
\# Consumes two numbers and squares their product	Number	
Examples		

Write some examples, then circle and label what changes...
examples:
function name \quad is \quad is \quad is \quad what the function produces

Rocket Height Challenges

1) Can you make the rocket fly faster?
2) Can you make the rocket fly slower?
\qquad
3) Can you make the rocket sink down instead of fly up?
\qquad
4) Can you make the rocket accelerate over time, so that it moves faster the longer it flies?
\qquad
5) Can you make the rocket blast off and then land again?
\qquad
6) Can you make the rocket blast off, reach a maximum height of exactly 1000 meters, and then land?
\qquad
7) Can you make the rocket blast off, reach a maximum height of exactly 1000 meters, and then land after exactly 100 seconds?
\qquad
8) Can you make the rocket fly to the edge of the the universe?

Design Recipe Telephone

Most computer programs are written by huge teams! It is critical that each team member records their thinking with enough detail for other team members to be able to pick up where they left off. We're going to practice collaborative programming through an activity called Design Recipe Telephone.

1. Prepare the class and the materials

Choose which set of word problems you are going to start with and print enough copies so that each student will get one word problem. Divide the class into groups of three.
Give each student within each group a different word problem from the set.

Word Problem Set 1:	Word Problem Set 2:	Option 3:
Design Recipe Telephone Set 1:g Design Recipe Telephone Set 1: h Design Recipe Telephone Set 1: r \star Once completed, the set of functions generated from these word problems can be used to fix the code in this Collaboration Starter File - For use with Design Recipe Telephone Set 1. If all the functions are defined correctly, the starter file will then generate a cool image!	Design Recipe Telephone Set 2: symmetry Design Recipe Telephone Set 2: I-rect Design Recipe Telephone Set 2: right-trapezoid	Use any of the Design Recipe problems that students haven't solved before. \star There is a large collection of math problems that would work well with the Design Recipe in the Additional Exercises section of our Solving Word Problems with the Design Recipe lesson.

2. Describe the rules for the activity

- In this activity, each person in your group will start with a different word problem. You will each be doing one step of each Design Recipe problem. After you complete your step, you will fold your paper to hide the part that you were looking at so that only your work and the rest of the recipe are visible. Then you will pass your work to the person to your right.
- The person who has received your paper will review your work and complete the next step based solely on what you wrote down for them. If they don't have the information they need, they will give the paper back to you for revision.
- Meanwhile, you will receive a different problem from the person to your left. If at any point your realize that the person before you didn't provide enough information, you may hand the paper back to them for revision.

Who's Doing What During Each Round of Design Recipe Telephone?

Round 1-Writing Contract and Purpose Statements from the Word Problem
Student 1-Problem A
Student 2 - Problem B
Student 3 - Problem C
everyone folds over the previous section, and passes their paper to the right

Round 2-Writing Examples based solely on the Contract and Purpose Statement

Student 1 - Problem C

Student 2 - Problem A
Student 3 - Problem B
everyone folds over the previous section, and passes their paper to the right

Round 3 - Writing Function Definitions based solely on the Examples

Student 1- Problem B	Student 2-Problem C	Student 3-Problem A

3. Peer Review and Revision

Direct students to trade their Design Recipe with another group. In order to engage in the peer review, they should place their Design Recipe and their Design Recipe Rubric side-by-side.

1) Go through the checklist in the left-hand column to assess their CONTRACT. Check boxes or leave them blank depending on what you observe.
2) Once you have examined and analyzed the CONTRACT, read the descriptive text (either "Wow!" or "Getting there") and check whichever one more accurately describes the work in front of you.
3) If the Design Recipe you're reviewing is "getting there," provide some descriptive feedback to help the student fix their work.
4) Repeat the process for the remaining sections of the Design Recipe.

4. Practice makes perfect!

This activity can be repeated several times, or done as a timed competition between teams. The goal is to emphasize that each step - if done correctly - makes the following step incredibly simple.

5. Synthesize

The Design Recipe is a way of slowing down and thinking through each step of a problem.
If we already know how to get the answer, why would it ever be important to know how to do each step the slow way?

- Sample Responses: Someday we won't be able to get the answer, and knowing the steps will help. We can help someone else who is stuck. We can work with someone else and share our thinking. We can check our work.

The Design Recipe (Restaurants)

Directions: Use the Design Recipe to write a function split-tab that takes in a cost and the number of people sharing the bill and splits the cost equally.

Contract and Purpose Statement

Every contract has three parts...
\#
lunction \qquad -> \qquad
\#
what does the function do?

Examples

Write some examples, then circle and label what changes...
examples:

Directions: Use the Design Recipe to write a function tip-calculator that takes in the cost of a meal and returns the 15\% tip for that meal.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...

examples:

($)$) is			
	function name	input(s)	what the function produces
($)$ is			
end			
Definition			
Write the definition, giving variable names to all your input values...			
fun	funtion		

end

The Design Recipe (Direct Variation)

Directions: Use the Design Recipe to write a function wage, that takes in a number of hours worked and returns the amount a worker will get paid if their rate is $\$ 10.25 / \mathrm{hr}$.

Contract and Purpose Statement

Every contract has three parts...
\# \qquad -> \qquad
\#
what does the function do?

Examples

Write some examples, then circle and label what changes...
examples:

Write the definition, giving variable names to all your input values...
fun \qquad 1):
\qquad
end

Directions: On average, people burn about 11 calories/minute riding a bike. Use the Design Recipe to write a function calories-burned that takes in the number of minutes you bike and returns the number of calories burned. .

Contract and Purpose Statement

Every contract has three parts...

$\#$	function name	Number	Domain
$\#$		$->$	Number
Examples	what does the function do?		

Write some examples, then circle and label what changes... examples:

end

The Design Recipe (Slope/Intercept)

Directions: For his birthday, James' family decided to open a savings account for him. He started with \$50 and committed to adding \$10 a week from his afterschool job teaching basketball to kindergartners. Use the Design Recipe to write a function savings that takes in the number of weeks since his birthday and calculates how much money he has saved.

Contract and Purpose Statement

Every contract has three parts...

Directions: Use the Design Recipe to write a function moving that takes in the days and number of miles driven and returns the cost of renting a truck. The truck is $\$ 45$ per day and each driven mile is $15 \$$.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...

examples:

end

The Design Recipe (Negative Slope/Intercept)

Directions: An Olympic pool holds 660,000 gallons of water. A fire hose can spray about 250 gallons per minute. Use the Design Recipe to write a function pool that takes in the number of minutes that have passed and calculates how much water is still needed to fill it.

Contract and Purpose Statement

Every contract has three parts...
\# \qquad :: \qquad -> Range
\#
function name
Domain what does the function do?

Examples

Write some examples, then circle and label what changes...

examples:

function name (_) in in		what the function produces
) is	
end function name	input(s)	what the function produces
Definition		

Write the definition, giving variable names to all your input values...
fun \qquad 1 \qquad):
end what the function does with those variable(s)
end

Directions: The community arts fund awards a $\$ 1500$ grant each month to support a new mural. They started with $\$ 50000$ in their account. Use the Design Recipe to write a function funds-avai lable that takes in the number of months and calculates how much money they have left.

Contract and Purpose Statement

Every contract has three parts...
\# function name :: \qquad -> Range
\#

Examples

Write some examples, then circle and label what changes...

examples:

() is			
-	function name	input(s)	what the function produces
	function name	input(s)	what the function produces
end			
Definition			
Write the definition, giving variable names to all your input values...			
fun			

end

The Design Recipe (Geometry - Rectangles)

Directions: Use the Design Recipe to write a function lawn-a rea that takes in the length and width of a rectangular lawn and returns its area.

Contract and Purpose Statement

Every contract has three parts...
\#
unction - \qquad -> Range
\#
what does the function do?

Examples

Write some examples, then circle and label what changes...
examples:

Directions: Use the Design Recipe to write a function rect-per imeter that takes in the length and width of a rectangle and returns the perimeter of that rectangle.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...

examples:

end

The Design Recipe (Geometry - Rectangular Prisms)

Directions: Use the Design Recipe to write a function rectprism-vol that takes in the length, width, and height of a rectangular prism and returns the Volume of a rectangular prism.

Contract and Purpose Statement

Every contract has three parts...
\#
\# function name $: \quad$ Domain -> Range
\#
function name
what does the function do?

Examples

Write some examples, then circle and label what changes...

examples:

Directions: Use the Design Recipe to write a function rect-prism-sa that takes in the width, length and height of a rectangular prism and calculates its surface area (the sum of the areas of each of its six faces)

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...

examples:

function name
end
Definition
Write the definition, giving variable names to all your input values...
fun \quad is
end

The Design Recipe (Geometry - Circles)

Directions: Use the Design Recipe to write a function circle-area-dec that takes in a radius and uses the decimal approximation of pi (3.14) to return the area of the circle.

Contract and Purpose Statement		
Every contract has three parts...		
\# ::		-> Range
function name	Domain	
\#		
	function do?	
Examples		

Directions: Use the Design Recipe to write a function circumference that takes in a radius and uses the decimal approximation of pi (3.14) to return the circumference of the circle.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...

examples:

end

The Design Recipe (Geometry - Cylinders)

Directions: Use the Design Recipe to write a function circle-area that takes in a radius and uses the fraction approximation of pi $\left({ }^{22} /{ }_{7}\right)$ to return the area of the circle.

Contract and Purpose Statement

Every contract has three parts...
\#
function name :: \qquad ->
Range
\# what does the function do?

Examples

Write some examples, then circle and label what changes...

examples:

function name
function name
Definition
Write the definition, giving variable names to all your input values...
function
what the function does with those variable(s)
end

Directions: Use the Design Recipe to write a function cy linder that takes in a cylinder's radius and height and calculates its volume, making use of the function circle-area.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...

examples:

end

The Design Recipe (Breaking Even)

Directions: The Swamp in the City Festival is ordering t-shirts. The production cost is $\$ 75$ to set up the silk screen and $\$ 9$ per shirt. Use the Design Recipe to write a function min-shirt-price that takes in the number of shirts to be ordered, n, and returns the minimum amount the festival should charge for the shirts in order to break even. (Assume that they will sell all of the shirts.)

Contract and Purpose Statement

Every contract has three parts...

$\#$
Examples \quad what does the function do?

Write some examples, then circle and label what changes...

examples:

The Design Recipe (Marquee \& Cubing)

Directions: Use the Design Recipe to write a function ma rquee that takes in a message and returns that message in large gold letters.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...
examples:

what the function does with those variable(s)
end

Directions: Use the Design Recipe to write a function num-cube that takes in a number and returns the cube of that number.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...

examples:

function name
function name
Definition
Write the definition, giving variable names to all your input values...
fun \quad is
function name
end

Design Recipe Telephone Set 1:g

Directions: Hali is decorating her tree house and is having a hard time fitting everything on the walls. She's figured out that if her artwork were $3 / 8$ of the original size it would all fit. Help her by writing a function g to scale down any image to a size she can use!

Contract and Purpose Statement

Every contract has three parts...
\# \qquad :: \qquad -> \qquad
\#
what does the function do?

Examples

Write some examples, then circle and label what changes...

examples:

Write the definition, giving variable names to all your input values...
fun \qquad 1 \qquad):
end what the function does with those variable(s)

[^0]
Design Recipe Telephone Set 1:h

Directions: Define a function h that will take an image and rotate it clockwise one-tenth of a turn. Hint: A full rotation is 360 degrees, which you may have heard people refer to in skateboarding or snowboarding tricks.

Contract and Purpose Statement

Every contract has three parts...
\# \qquad -> \qquad
function name
Domain
Range
\#
what does the function do?
Examples
Write some examples, then circle and label what changes...

examples:

Write the definition, giving variable names to all your input values...
fun \qquad (\qquad variable(s)):
end what the function does with those variable(s)

[^1]
Design Recipe Telephone Set 1: r

A Contract worth remembering...
\# regular-polygon :: Number, Number, String, String -> Image
\# Takes in a size, the number of sides, a color, and a fill type and makes a shape with all equal sides and all angles congruent.
Directions: Zora's favorite shape is a regular pentagon and they want to decorate a special box with pentagons of every color. Help them to realize their dream by writing a function r that takes in a color and returns a solid 5 -sided regular polygon of size 300 in the given color.

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...

examples:

function name

Write the definition, giving variable names to all your input values...
\qquad):
\qquad end

Design Recipe Telephone Set 2: symmetry

* \star NOTE \star When writing examples, you can assume that we have predefined image-a and image-b.*

Directions: Nassim loves all things symmetrical. He figured out that if you flip an image horizontally and then place it beside the original image, you can turn any image into a symmetrical image. Help him to be more efficient by writing a new function symmet ry that will take in any image and use it to make a new symmetrical image.

Contract and Purpose Statement

Every contract has three parts...
\# function name : \qquad ->
\#
what does the function do?

Examples

Write some examples, then circle and label what changes...
examples:

function name (_) input(s) is		what the function produces
) is	
end function name	input(s)	what the function produces
Definition		

Write the definition, giving variable names to all your input values...
un \qquad (variabes):
\qquad
end

A Contract worth remembering:

Design Recipe Telephone Set 2:I-rect

Directions: Ava loves purple rectangles that are 5 times as wide as they are tall. Help her out by writing a function l-rect that takes in a width and generates a solid rectangle that Ava would love.

Contract and Purpose Statement

Every contract has three parts...
\#
function name
:: \qquad -> \qquad
\#
what does the function do?
Examples
Write some examples, then circle and label what changes... examples:

Write the definition, giving variable names to all your input values...
fun \qquad 1 variable(s) :):

end

Design Recipe Telephone Set 2: right-trapezoid

* \star NOTE \star An isosceles triangle has two sides that are the same length.*

Directions: Zosia loves right-trapezoids composed of squares and isosceles-right-triangles. Write a function right-trapezoid that takes in the sidelength of the square and a color and returns a solid right-trapezoid.

Contract and Purpose Statement

Every contract has three parts...
\#
function name : :
\# what does the function do?

Examples

Write some examples, then circle and label what changes... examples:

\qquad
end

Definition

Write the definition, giving variable names to all your input values...
\qquad):
\qquad
end

[^2]
Defining Table Functions

The steps of the Design Recipe don't change just because we're working with Rows, but we can make some adjustments when using Rowconsuming functions to filter tables and build columns!

Let's try a concrete example: Write a function is-liza rd, which tells us whether an animal is a lizard.

Contract and Purpose

- We still want to pick good names. Since we're writing a function to check if an animal is a lizard, call it is-liza rd!
- The Domain is a lot easier - it's always a Row!
- The Range is easier, too. If we're writing a function to filter a Table, we know the Range has to be a Boolean . (What would it be if we were building a column of Numbers? Images? Strings?)

Examples

The goal of the Examples step is to find the pattern that represents what the function does. When working with Rows, sometimes we have to start by just focusing on what the answer should be.
Suppose we have two rows defined:
lizard-row (which happens to be a lizard) cat-row (which happens to be a cat)
We can imagine the answers for an is-lizard function to be...

```
examples:
    is-lizard(lizard-row) is true
    is-lizard(cat-row) is false
end
```

But why do we think these expressions will evaluate to true and false?
We KNOW lizard-row is a lizard, and we KNOW cat-row is a cat and not a lizard...
If we replace our answers with the Boolean expressions that compare their species, someone else would be able to follow our logic.

```
examples:
    is-lizard(lizard-row) is "lizard" == "lizard" # will produce true
    is-lizard(cat-row) is "cat" == "lizard" # will produce false
end
```

And what work would the computer need to do to know that lizard-row is a lizard and cat-row is a cat? Look in the species column!

```
examples:
    is-lizard(lizard-row) is lizard-row["species"] == "lizard" # will produce true
    is-lizard(cat-row) is cat-row["species"] == "lizard" # will produce false
end
```

Sometimes we can get straight to this final form in one step, but sometimes it helps to break our thinking down into pieces.
Once we see the pattern, we can circle and label what changes .
In this case, only the Row representing the animal changes! So we might use r as our label, to represent the Row.

Definition

The final step in the Design Recipe is to take the pattern from our examples and generalize it to work with any input.
It's no different when working with Rows.
Our previous step is a huge help. We can copy everything that stays the same, and replace the part that changes with the label we used.
Combining the Contract, Purpose, Examples and Definitions, we end up with:

```
# is-lizard :: Row -> Boolean
# Consumes a Row, and checks to see if the species column is "lizard"
examples:
    is-lizard(lizard-row) is lizard-row["species"] == "lizard" # will produce true
    is-lizard(cat-row) is cat-row["species"] == "lizard" # will produce false
end
fun is-lizard(r): r["species"] == "lizard" end
```


Making Connections

Open the Row Functions Starter File on your computer, save a copy, and Click "Run"!

1) Write the code to lookup the value of the weeks column for each of the rows listed (the first one has been completed for you).

row	code to lookup the value of the weeks column
cat-row	cat-row["weeks"]
young-row	
old-row	

2) Write the code that uses the circle function to draw a solid, green circle whose radius is the number of weeks it took to get adopted (the first one has been completed for you).

row	code to draw a circle using the "weeks" of the row as the radius
cat-row	circle(cat-row["weeks"], "solid", "green")
young-row	
old-row	

3) Check with your partner or another student to confirm that your code matches.
4) What is the name of the animal defined in old-row? \qquad How many weeks did it take for them to be adopted? \qquad

weeks-dot

Scroll down in the Row Functions Starter File until you find the Contract, Purpose, Examples and Definition for weeks-dot.
5) What is the Domain of this function? \qquad The Range? \qquad How many examples does this function have? \qquad
6) Does the Purpose Statement make it clear what this function should do, when given a Row? \qquad
7) Look at the first two examples. How do they satisfy the Contract and Purpose Statement?
\qquad
\qquad
These examples show us exactly what should be produced for cat-row and young-row - the two Rows representing "Sasha" and "Wade", based on their weeks to adoption (1 and 3). But they don't show us where the computer should get the number of weeks from!
8) The last two examples do the same thing as the first two examples, but the numbers 3 and 1 have been replaced! Where do they get the number of weeks from?
9) How is the definition for the weeks-dot function connected to our examples?
10) Add an example for old-row to match first pair of examples (using the actual number of weeks). Then add an example for the second pair (using a lookup).

* Choose one more row that's defined at the top of the file, and add examples for that as well.

Design Recipe Telephone Set 1: is-dog

Directions: Define a function called is-dog, which consumes a Row of the animals table and computes whether the animal is a dog. + HINT: use predefined rows like dog-row to make your examples easier!

Contract and Purpose Statement

Every contract has three parts...

$\#$ is-dog:	Row
function name	Domain

\#
what does the function do?
Examples
Write some examples, then circle and label what changes...

examples:

Write the definition, giving variable names to all your input values...
fun \qquad 1 variable(s) : what the function does with those variable(s) end

Design Recipe Telephone Set 1: days-to-adopt

Directions: Define a function called days-to-adopt, which computes the number of days it took an animal to be adopted by multiplying the number of weeks by 7 . We've started both examples for you.

Contract and Purpose Statement

Every contract has three parts...

\#
what does the function do?

Examples

Write some examples, then circle and label what changes...

examples:

Write the definition, giving variable names to all your input values...
fun \qquad 1 \qquad):
end what the function does with those variable(s)

Design Recipe Telephone Set 1: is-young

Directions: Define a function called is-young, which consumes a Row of the animals table and computes whether it is less than two years old. + HINT: use predefined rows like young-row to make your examples easier!
Contract and Purpose Statement
Every contract has three parts...

$\#$ is-young::	Row	Domain

\#
what does the function do?
Examples
Write some examples, then circle and label what changes...

examples:

Write the definition, giving variable names to all your input values...
fun \qquad 1 \qquad):
end what the function does with those variable(s)

Design Recipe Telephone Set 2: is-old

Directions: Define a function called is-old, which consumes a Row of the animals table and computes whether it is more than 10 years old. + HINT: use predefined rows like old-row to make your examples easier!

Contract and Purpose Statement

Every contract has three parts...

\#

Write some examples, then circle and label what changes...

examples:

Write the definition, giving variable names to all your input values...
fun \qquad 1 variable(s) :
\qquad end

Design Recipe Telephone Set 2: kilos

Directions: Define a function called ki los, which consumes a Row of the animals table and computes the number of kilograms the animal weighs ($1 \mathrm{~kg}=2.2 \mathrm{lbs}$). HINT: use predefined rows like cat-row to make your examples easier!

Contract and Purpose Statement

Every contract has three parts...

\# function name $::$	Row	Domain
Number		

\# Consumes an animal, and muiltiples the pounds by 2.2 to produce kg

Examples

Write some examples, then circle and label what changes...
examples:

Write the definition, giving variable names to all your input values...

2.2 * r["pounds"] what the function does with those variable(s)
end

Design Recipe Telephone Set 2: is-cat

Directions: Define a function called is-cat, which consumes a Row of the animals table and computes whether the animal is a cat. + HINT: use predefined rows like cat-row to make your examples easier!

Contract and Purpose Statement

Every contract has three parts...

$\#$ is-cat $::$	Row
function name	Domain

\#
what does the function do?
Examples
Write some examples, then circle and label what changes...

examples:

Write the definition, giving variable names to all your input values...
fun \qquad 1 variable(s) :
\qquad end

Advanced Displays

Functions as Data

You've learned that functions are machines that consume and produce data .

In the real world, we see machines consume things to produce things all the time:

- Bulbs consume electricity and produce light.
- Toasters consume bread and produce toast.

Sometimes, machines consume other machines:

- A school bus is a machine. It comes with a stereo, which could be swapped out for a new one with more features. A stereo is a machine. And the bus needs one of them in order to play music over the speakers.
- A blender might have different attachments. Each attachment is a machine of its own and the blender needs one of them to work!

This is true of function machines in math and programming, as well! By now you've learned plenty of data types (e.g. - Numbers, Strings, Images, Booleans, Rows and Tables). ... And Functions can be their own kind of data type!

- Imagine a function species-dot, that consumes a Row from the Animals Dataset, and produces a different-colored square depending on the species.
- What if we used species-dot to customize the dots on our scatterplot, instead of using the same blue dot for each animal? In this example, we'd be using the species-dot function as an input to our scatter-plot function!

Here are the Contracts for some special display functions that consume functions, including the scatterplot we just described: Look carefully at the last argument in each Domain. In each case, the function consumes a Row and produces an Image.

```
# image-scatter-plot :: Table, String, String, (Row -> Image) -> Image
# image-histogram :: Table, String, Number, (Row -> Image) -> Image
# image-bar-chart :: Table, String, (Row -> Image) -> Image
# image-pie-chart :: Table, String, (Row -> Image) -> Image
```


Piecewise Functions

Functions always apply a particular rule to their input.

- In an earlier lesson, you saw how gt always draws a solid, green triangle using the input as the size.
- In the species-dot example above, there's no single rule that will generate a different color for each species.

We need a way for functions to change rules, depending on their input.

Piecewise Functions are functions that can behave one way for part of their Domain, and another way for a different part.

- Piecewise functions are divided into "pieces".
- Each piece has two parts: the "if" and the "then".
- This tells the computer when to apply each rule, and what the rule is.

In our species-dot example, our function might draw black squares when the input is a dog, but orange squares when the input is a cat. The function definition would look like this:

```
# species-dot :: (Row) -> Image
fun species-dot(r):
    if (r["species"] == "dog"): square(5, "solid", "black")
    else if (r["species"] == "cat"): square(5, "solid", "orange")
    else if (r["species"] == "rabbit"): square(5, "solid", "pink")
    else if (r["species"] == "tarantula"): square(5, "solid", "red")
    else if (r["species"] == "lizard"): square(5, "solid", "green")
    end
end
```


age-dot

1) Write the code to lookup the value of the age column for each of the rows listed (the first one has been completed for you).

row	code to lookup the value of the age column
dog-row	dog-row["age"]
old-row	
young-row	

2) Write the code that uses the circle function to draw a solid, blue circle whose radius is the age of the animal for each of the rows listed (the first one has been completed for you).

row	code to draw a circle using the "age" of the row as the radius
dog-row	circle(dog-row["age"], "solid", "blue")
old-row	
young-row	

3) Check with your partner or another student to confirm that your code matches.

Instead of writing repetitive code like this over and over for each animal, let's define a function to do it for us!

Defining the Function

Directions: Define a function called age-dot, which takes in a row from the Animals Table and draws a solid, blue circle whose radius is the age of the animal. HINT: Use the rows from above in your examples!

Contract and Purpose Statement

Every contract has three parts...

$\#$ fuge-dot::	Row	Domain
function name	$->$	Image
Examples		

Write some examples, then circle and label what changes...

examples:

Definition

Write the definition, giving variable names to all your input values...
fun \qquad):
end

species-tag

To help you with this page, we've re-printed the Contract for the text function, and an example of how to use it.
(Remember, you can always refer to the Contracts Pages. If you're working with a printed workbook, they are included in the back.)


```
text("hello", 24, "green")
```

1) On the three lines below, write the code to lookup the value of the species column from dog-row, old-row, and young-row.
\qquad
\qquad
\qquad
2) On the three lines below, write the code that uses the text function to show the species of those same three rows in red, $15 p x$ letters.
3) Check with your partner or another student. Do you have the same code? Why or why not?

Instead of writing this out over and over for each animal, let's define a function to do it for us!

Defining the Function

Directions: Define a function called spec ies-tag, which takes in a row from the Animals Table and draws its name in red, 15px letters.
HINT: Use of the rows from above in your examples!

Contract and Purpose Statement

Every contract has three parts...

\# species-tag::	Row
function name	Domain

Examples

Write some examples, then circle and label what changes...
examples:

Definition

Write the definition, giving variable names to all your input values...

[^3]
Exploring Image Scatter Plots

Look at the code in the Custom Scatter Plot Starter File.

1) Compare the definitions of age-dot and species-tag to what you wrote. Are they the same? If not, what is different?

Answer the following questions about the last line of code in the file, which is commented out.
2) What is the name of the function being used here? \qquad How many things are in its Domain? \qquad
3) What is the 1st argument? __ What is its data type? \qquad
4) What is the 2 nd argument? \qquad What is its data type? \qquad
5) What is the 3rd argument? \qquad What is its data type? \qquad
6) What is the 4 th argument? \qquad
7) What is the data type of the fourth argument in the Domain? If you're not sure, write down your thinking. What can you rule out? What do you think it might be? \qquad
8) Uncomment the last line at the bottom of the file, and click "Run". What does image-scatter-plot do with its 4th argument?
9) Try changing your age-dot function to use different colors, or even different shapes! Can you make the size of the shape be one half the age of the animal?
10) On a new line in the Definitions Area, try making an image-scatter-plot using the species-tag function.

Click run, and describe what you see.

Understanding Custom Displays

11) Look at the image scatter plot that has dots of different sizes.

Can you draw any conclusions about animals that are both young and lightweight? \qquad
12) Looking at that same scatter plot, the director of the shelter says: "Animals that are older and that weigh more than 50 pounds generally take at least 5 weeks to be adopted." Do you agree with this statement? Explain. \qquad
13) Look at your image scatter plot with species nametags in red.

What does this chart reveal that we couldn't see on the original (pounds v. weeks) scatter plot? \qquad

Exploring Conditional/Piecewise Functions

```
Here's an example of a piecewise function with 3 "pieces" (or "conditions"):
# species-dot :: (Row) -> Image
fun species-dot(r):
    if species-dot(r["species"] == "dog"): square(5, "solid", "black")
    else if (r["species"] == "cat"): square(5, "solid", "orange")
    else if (r["species"] == "lizard"): square(5', "solid"', "green")
    end
end
```


What do you Notice about this code?

What do you Wonder?

1) What will this function produce for a dog? \qquad
2) What will this function produce for a cat? \qquad
Open the Piecewise Displays Starter File, and click "Run".
3) Compare the regular scatter plot with the image scatter plot. What can you see now that you couldn't see before?
\qquad
\qquad
4) Compare the regular histogram with the image histogram. What can you see now that you couldn't see before?
\qquad
\qquad
5) What do you think will happen if we run the function on a species that it has no condition for? \qquad
6) On line 45, add a comment (\#) to "turn off" the condition for snails. Click Run and test your prediction. In your own words, describe how piecewise / conditional functions work.

Optional: Make a new function (don't delete species-dot!), which uses piecewise functions to draw something different! For example, have it draw different shapes depending on whether an animal is younger than 3 years old or not.

Word Problem: fixed-dot

Directions: We want to generate a custom dot for our image-scatter-plot, to distinguish between animals that are fixed and unfixed. Write a function called fixed-dot, which takes in a Row from the animals table and generates a 5-pixel solid green dot if the animal is fixed and a 5-pixel black dot if the animal is not fixed.

Every contract has three parts...

Animal Image-Explore

Open the Animal Images Starter File and look at the code. What do you Notice?

What do you Wonder?

1) How is this program similar to the last one we looked at?
\qquad
\qquad
2) How is the code different from the other image-scatter-plot programs we've seen?
\qquad
\qquad
3) Click "Run". How does using clip art help us to better understand the data?
\qquad
\qquad
4) What risks might there be to using clip art for data that describes humans?
5) We have seen image-scatter-plot used to make a lot of different custom scatter plots. How could you use image-scatter-plot in your own analysis?
\qquad
\qquad
\qquad
\qquad

Dots for Value Ranges-Explore

Open the Dots for Value Ranges Starter File and look at the code.
What do you Notice? What do you Wonder?

1) How is this program similar to the last one we looked at?
2) How is the code for weight-dot different from other functions we've seen?
3) Can you explain how this code works?

Rubric: Beautiful Data

	Wow!	Getting There	Needs Improvement
Get Inspired	I found a terrific visualization and provided its title. I gave detailed reasons why it matters to me and what I like about it. I included clear reasons why the artistic quality of the visualization adds to its appeal and usefulness.	I found a visualization that I liked and provided its title. I came up with at least one reason why it matters and what I like. I wrote something about how the creativity in the visualization adds to it.	I found a visualization, but didn't say much about why I liked it or why it's creative.
Find Your Data	I found data and made a display that is interesting to me. I submitted my Pyret file so that my teacher could see the code used to generate the display. I wrote detailed reasons about why my data and visualization matter.	I found data and made a display that is interesting to me. I submitted my Pyret file so that my teacher could see the code used to generate a display. I wrote something about why the data and/or the display are interesting.	I found data and made a display, but did not describe why it was interesting to me.
What Data is Missing?	I thought of at least two columns in my dataset that would be really important to consider, in addition to the displays I made earlier. For each of those columns, I wrote a clear observation and question about how those columns might influence the displays.	I thought of at least two columns in my dataset that matter, but had trouble explaining what my observation was or what the question about those columns might be.	I could not think of two columns that mattered, so I picked them at random. I could not explain what the observation or questions would be.
Make it Beautiful	I included my custom display and submitted the Pyret file with the code used to make it. My customized display uses color, shapes, and/or images that are relevant to the topic, visually appealing, and make the data easier to understand. My writing clearly communicates all of this.	I included my custom display and submitted the Pyret file with the code used to make it. My customized display uses color, shapes, and/or images that are relevant to the topic. I adequately describe what my code does.	I included my custom display, but \| am missing a description of what I did, or my customization isn't really relevant to the topic.

Beautiful Data: Reflect and Plan

Inspiration

Choose one display that interests you from the following sources:

- The Largest Vocabulary in Hip Hop
- 200 Years of Immigration
- Information is Beautiful

1) Title of the display you chose: \qquad
2) What drew you to this display? How do the visuals make the display more accessible or exciting?

Make Your Own Simple Display

Choose a dataset that interests you - or one that you're already working with - and use bar-chart, pie-chart, histogram, or scat ter-plot to create a simple display that is interesting to you.
3) What display did you create, and what columns did you use?
\qquad
4) What does the display show? Why would it be interesting to someone else? \qquad

Make Your Own Custom Display

5) Think about at least two columns that might give you more insight into your data, and why those other columns matter in your display.

Write your observations and questions below. \qquad
\qquad
\qquad
6) Describe the Custom Display you want to make and what visual cues will enhance the display. \qquad
\qquad
\qquad
7) In code.pyret.org (CPO)

- Define a row-consuming function that produces custom images for each Row in your dataset using your new column(s).
- Use your row-consuming function to create a data display that makes the data come alive, and shows the deeper patterns at work.
- Follow your teacher's directions for submitting your Pyret file.

8) What new insights did you gain and why couldn't you see them in the original display? \qquad
\qquad
\qquad
\qquad

Advanced Table Manipulation

You've seen that Pyret has special functions that we can use to manipulate Tables:

- sort - consumes the name of a column and a Boolean value to determine if that table should be sorted by that column in ascending order
- row-n - consumes an index (starting with zero!) and produces a row from a table
- filter - consumes a Boolean-producing function, and produces a table containing only rows for which the function returns true
- build-column - consumes the name of a new column, and a function that produces the values in that column for each Row

You've also seen the "Order of Operations" for things like addition, subtraction, multiplication and division. Is there an Order of Operations for manipulating tables?

Suppose you have the following function defined:
fun days-to-adopt(r): r["weeks"] * 7 end
One of the Circles of Evaluation below will sort the table by the number of days it took for each animal to be adopted. One of them will produce an error! Can you figure out which one?

We can't sort by a column that doesn't exist yet! In fact, we can't filter by that column either. When filtering and building tables, it's important to keep the order of operations in mind!

Reading Row and Function Definitions

Open the Table Functions Starter File on your computer, save a copy, and click "Run".

1) What is the name of the Table defined on line 5? \qquad
2) How many columns does it have? \qquad
3) What is the name of the Row defined on line 17 ? \qquad
4) Is red-circle a Number, String, Image, Boolean, Table, or Row? \qquad
5) Type red-circle into the Interactions Area. What do you get? \qquad
6) In the space provided on lines 19 and 20, add new definitions for two more Rows from this table.
7) A Contract for a function is written on line 22 . What is its name? \qquad
8) What is its Domain? \qquad
9) What is its Range? \qquad
10) What other functions are defined in the starter file?
11) Use the function is-red, passing in a Row. For example, type is-red (blue-triangle). What do you get? \qquad
12) What does the is-red function do? \qquad
For the remaining functions, read the code and try to guess what it does before testing it out by passing in a Row.
13) What does is-polygon do? \qquad
14) What does lookup-name do? \qquad
15) What does is-triangle do? \qquad
16) Define two new functions: is-green and is-blue.

There is a hidden function called d raw-shape. What is its Domain and Range? What does it do?
\star Is there another way to define is-polygon, so that it doesn't use the "polygon" column at all?

Exploring Table Functions

Open your copy of the Table Functions Starter File and click "Run".

Filtering Rows

1) What does filter(shapes-table, is-red) evaluate to? Describe the value you get back below.
2) What does filter(shapes-table, is-polygon) evaluate to? Describe the value you get back below.
3) Write the code to generate a table of only triangles.
4) At the bottom of the Definitions Area, define triangles by writing triangles = filter(shapes-table, is-triangle). Click "Run" and evaluate triangles in the Interactions Area.
5) Define reds to be a table of only red shapes.
6) What do the contracts for is-red, is-polygon, and is-triangle have in common?
7) Find the Contract for filter on the Contracts Page. If you're working with a printed workbook, the contracts pages are included in the back. Explain how filter uses the two inputs specified in the Domain.
8) What happens if you evaluate filter(shapes-table, lookup-name) ?Why?

Building Columns

9) What does build-column(shapes-table, "red", is-red) evaluate to?
10) What does build-column(shapes-table, "img", draw-shape) evaluate to?
11) Find the Contract for build-column on the Contracts Page. If you're working with a printed workbook, the contracts pages are included in the back. Explain how build-column uses the three inputs specified in the Domain.

Define your own table!

\star In the Definitions Area, define a table of your own using filter or build-column. Add a comment to describe what's in it!

What Table Do We Get?

Consider the table below, and the four function definitions that follow:
The table t below represents four animals from the shelter:

name	sex	age	fixed	species	pounds
"Toggle"	"female"	12	true	"dog"	48
"Fritz"	"male"	4	false	"dog"	92
"Nori"	"female"	6	true	"dog"	35.3
"Sunflower"	"female"	2	false	"cat"	51.6
fun lookup-fixed(animal): animal["fixed"] end fun is-dog(animal): animal["species"] $==~ " d o g " ~$ end fun is-old(animal): animal["age"] >10 end fun label(animal): text(animal["name"], 20, "red") end					

Below is a list of expressions, eaching using one table function. Match each expression to the description of the table it will produce.

```
        sort(t, "age", true)
        sort(t, "pounds", false)
    build-column(t, "sticker", label)
        filter(t, is-old)
        filter(t, lookup-fixed)
        filter(t, is-dog)
        build-column(t, "dog", is-dog)
        filter(t, label)
            8
```

A Produces a table with Toggle, Fritz, and Nori - but not Sunflower.

B
Produces a table of all four animals, sorted youngest-tooldest

C Produces a table, with only Toggle.

D Produces an identical table with an extra column called "dog", whose values are true, true, true, false

E Produces a table containing only Nori and Toggle.

F Produces a table with all four animals, sorted from

G Won't run: will produce an error. (Why?)

H Produces an identical table with an extra column called "sticker", whose values are images

Putting it All Together

Open the Putting it All Together Starter File and take a look at the helper functions in the Definitions Area.
Write the names of those functions here: \qquad

Filter and Building with our Helper Functions

Example: Make a table of only dogs (define it as dogs)
dogs = filter(animals-table, is-dog)

1) Make a table of only fixed animals (define it as fixed)
fixed =
2) Make a table with a column called "sticker", containing a label for every animal

stickers $=$

3) Make a table of only fixed dogs (define it as fixed-dogs)
$\underline{\text { fixed-dogs }=}$
Make a table of old, fixed dogs... with a "sticker" column! (define it as sticker-table)
sticker-table =

Define Additional Helper Functions

4) Define a function called is-lizard, which consumes a Row of the animals table and computes whether the animal is a lizard.
5) Define a function called months, which consumes a Row of the animals table and divides the weeks by 4.435 to get the approximate equivalent number of months to adoption.

Make a table with a "months" column (define it as months-table)

Make Displays Using Your New Tables

6) Make a pie chart showing the sex of only fixed dogs.
7) Make a box plot showing the distribution of months to adoption.

Make a scatter plot of old, fixed dogs, comparing age to pounds using the "sticker" as the label!

The Design Recipe: is-cat / is-rabbit

We've provided the completed Design Recipe for is-cat as a model to help you think through the Design Recipe for is-rabbit.
Directions: Define a function called is-cat, which consumes a Row of the animals table and computes whether the animal is a cat. HINT: use predefined rows like cat-row to make your examples easier!

Contract and Purpose Statement

Every contract has three parts...

\# is-cat::
$\frac{\text { Runction name }}{\text { Row }} \quad$ Domain
\# Consumes an animal, and checks whether the species $==$ "cat"
what does the function do?

Write some examples, then circle and label what changes...
examples:

$\underset{\text { function name }}{\text { is-cat }}$ cat-row $)$ input(s) $\operatorname{cat-row["species"]~==~"cat"~}$	
is-cat rabbit-row) is rabbit-row["species"] == "cat"	
function name input(s) end	what the function produces
Definition	
Write the definition, giving variable names to all your input values...	
fun \qquad	
r ["species"] == "cat"	
end	what the function does with those variable(s)

Directions: Define a function called is-rabbit, which consumes a Row of the animals table and computes whether the animal is a lizard. HINT: use predefined rows like rabbit-row to make your examples easier!

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...

examples:

Write the definition, giving variable names to all your input values...

end

* Add is-rabbit to your Putting it All Together Starter File.

Practice using filter: Define a new table called cats that only includes the cat rows.

The Design Recipe: kilos/ days-to-adoption

We've provided the full Design Recipe for ki los as an example to help you think through the Design Recipe for days-to-adoption.
Directions: Define a function called ki los, which consumes a Row of the animals table and computes the number of kilograms the animal weighs ($1 \mathrm{~kg}=2.2 \mathrm{lbs}$). HINT: use predefined rows like cat-row to make your examples easier!

Contract and Purpose Statement

Every contract has three parts...

\# kilos:
function name
\# Consumes an animal, and muiltiples the pounds by 2.2 to produce $k g$
Examples

Write some examples, then circle and label what changes...
examples:

kilos(dog-row) is $\underline{2.2 * \text { dog-row["pounds"] }}$ what the function produces	
function name	input(s)		
kilos(cat-row) is 2.2 * cat-row["pounds"]	
function name end	input(s)		what the function produces
Definition			

Write the definition, giving variable names to all your input values...
fun $\frac{k i l o s}{\text { function name }} \quad r \quad$ variable(s)

$$
2.2 \star \text { r["pounds"] }
$$

end

Directions: Define a function called days-to-adopt, which computes the number of days it took an animal to be adopted by multiplying the number of weeks by 7.

Contract and Purpose Statement

Every contract has three parts...
\qquad ::
\#

what does the function do?

Examples

Write some examples, then circle and label what changes...
examples: what the function does with those variable(s)

end

Practice using build in Putting it All Together Starter File: Define a new table called ki los with an extra column for "kilos".

Circles of Evaluation for Filtering and Building a New Table

To complete this page, open the Putting it All Together Starter File.

1) Draw the Circles of Evaluation for for how you would combine the relevant functions from the starter file to make: A new table of just the old cats at the shelter.
2) Translate the Circles of Evaluation above into the code you'll type into Pyret.
3) Test out the expression you wrote in the starter file.
4) What do you Notice and Wonder when you look at the display?

Circles of Evaluation for Filtering and Building a Box Plot

To complete this page, open the Putting it All Together Starter File.

1) Draw the Circles of Evaluation for how you would combine the relevant functions from the starter file: A box-plot showing the distribution of the weight (in kilos) of young dogs at the shelter.
2) Translate the Circles of Evaluation above into the code you'll type into Pyret.
3) Test out the expression you wrote in the starter file.
4) What do you Notice and Wonder when you look at the display?

Circles of Evaluation for Filtering and Building a Scatter Plot

To complete this page, open the Putting it All Together Starter File.

1) Draw the Circles of Evaluation for for how you would combine the relevant functions from the starter file to make the display: A scatter plot showing the relationship between kilograms and weeks to adoption for old dogs at the shelter...
2) Translate the Circles of Evaluation above into the code you'll type into Pyret.
3) Test out the expression you wrote in the starter file.
4) What do you Notice and Wonder when you look at the display?

Function Cards

Print and cut these out, for use with the Filter activity in this lesson. You can make up your own using the blanks provided at the bottom!

The Design Recipe: is-dog/is-female

Directions: Define a function called is-dog, which consumes a Row of the animals table and computes whether the animal is a dog. HINT: use predefined rows like dog-row to make your examples easier!

Contract and Purpose Statement

Every contract has three parts...
 Write some examples, then circle and label what changes...
examples:

is-dog(dog-row) is	"dog"
function name	input(s)	what the function produces
is-dog() is	
function name end	input(s)	what the function produces

Write the definition, giving variable names to all your input values...
fun

1):
nd what the function does with those variable(s)
end

Directions: Define a function called is-female, which consumes a Row of the animals table and returns true if the animal is female. HINT: use predefined rows like female-row to make your examples easier!

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...

examples:

end

The Design Recipe: is-old/name-has-s

Directions: Define a function called is-o ld, which consumes a Row of the animals table and computes whether it is more than 12 years old. HINT: use predefined rows like old-row to make your examples easier!

Contract and Purpose Statement

Every contract has three parts...

\#

- \qquad -> \qquad
\#
what does the function do?
Examples

Write some examples, then circle and label what changes...
examples:

Write the definition, giving variable names to all your input values...
fun \qquad 1):
end

Directions: Define a function called name-has-s, which returns true if an animal's name contains the letter "s". HINT: The name of the animal in cat-row is "Sasha" and the name of the animal in dog-row is "Toggle".

Contract and Purpose Statement

Every contract has three parts..

\qquad
\qquad
-> \qquad
\#

Examples

Write some examples, then circle and label what changes...

examples:

Composing Table Operations

The table t below represents four animals from the shelter:

name	sex	age	fixed	pounds
"Toggle"	"female"	3	true	48
"Fritz"	"male"	4	true	92
"Nori"	"female"	6	true	35.3
"Sasha"	"female"	1	false	6.5
fun is-fixed(r): fun is-young(r): fun nametag(r): fuge"] text(r["name"], 20, "red") end end				

Match each table description on the left, to the Circle of Evaluation that will produce it.

From Circles to Code

The table t below represents four animals from the shelter:

name	sex	age	fixed	species	pounds
"Toggle"	"female"	12	true	"dog"	48
"Fritz"	"male"	4	false	"dog"	92
"Nori"	"female"	6	true	"dog"	35.3
"Sunflower"	"female"	2	false	"cat"	51.6

Convert each Circle of Evaluation below into Pyret code. What do you think the resulting table will be?
The first one has been done for you.

	Circle of Evaluation	Pyret code
1		sort(filter(t, is-dog), "name", false)
2		
3		
4		
5		

Define the functions specified below by filling in the blanks. The first one has been done for you.
A function is-cat, which returns true if the animal is a cat.
A function is-dog, which returns true if the animal is a dog.
fun is-dog(r): end
8 A function is-big, which returns true if an animal weighs more than 50 pounds.
fun is-big(r): \qquad end

Planning Table Operations

Consider the table below, and the function definitions that follow:
The table t below represents four animals from the shelter:

name	sex	age	fixed	pounds
"Toggle"	"female"	3	true	48
"Fritz"	"male"	4	true	92
"Nori"	"female"	6	true	35.3
"Sasha"	"female"	1	false	6.5

fun is-female(r): r["sex"] == "female" end
fun is-young (r) : r ["age"] < 4 end
fun is-fixed(r): r["fixed"] end

For each prompt on the left, draw the Circle of Evaluation that will produce the desired table or display.

	Prompt	Circle of Evaluation
1	Produce a Table containing all young, fixed animals	
2	Produce a Table showing all fixed female animals, sorted by age	
3	Produce a box-plot for all fixed female animals, showing the distribution of age	
4	Produce a pie-chart for all young, fixed animals, showing the distribution of sex	

Composing Table Operations: Order Matters!

In table t below, fill in the "kilos" values by dividing each of the 4 animals' pounds column value by 2.2.

name	sex	age	fixed	pounds	kilos
"Toggle"	"female"	3	true	48	
"Fritz"	"male"	4	true	92	
"Nori"	"female"	6	true	35.3	
"Sasha"	"female"	1	false	6.5	

Then consider the table and the 2 duntction definitions.
fun is-female(r): r["sex"] == "female" end
fun kilograms(r): r["pounds"] / 2.2 end
fun is-heavy(r): r["kilos"] > 25 end
Match each table description on the left, to the Circle of Evaluation that will produce it.

From Circles to Code(2)

The table t below represents four animals from the shelter:

name	sex	age	fixed	species	pounds
"Toggle"	"female"	12	true	"dog"	48
"Fritz"	"male"	4	false	"dog"	92
"Nori"	"female"	6	true	"dog"	35.3
"Sunflower"	"female"	2	false	"cat"	51.6

For each of the Circles of Evaluation below, convert them into Pyret code. What do you think the resulting table will be? The first one has been done for you.

	Circle of Evaluation	Pyret code
1		```sort(build-column(t, "kg", kilograms), "name", true)```
2		
3		
4		
5		

Define the functions specified below by filling in the blanks.

6	$\begin{array}{l}\text { A function is-fixed, which returns true if } \\ \text { the animals is fixed. }\end{array}$
7	$\begin{array}{l}\text { A function kilograms, which returns the } \\ \text { weight of the animal in kilograms (1kg is } \\ \text { about 2.2lbs). }\end{array}$
8	$\begin{array}{l}\text { A function is-female, which returns true } \\ \text { if an animals weighs more than } 50 \text { pounds. }\end{array}$

fun is-fixed(r): end
fun kilograms(r):
end
fun is-female(r):
end

	Subset	The code to define that subset
1	Kittens	kittens = filter(filter(animals-table, is-cat), is-young)
2	Puppies	
3	Fixed Cats	
4	Cats with "s" in their name	
5	Old Dogs	
6	Fixed Animals	
7	Old Female Cats	
8	Fixed Kittens	
9	Fixed Female Dogs	
10	Old Fixed Female Cats	

Displaying Data

Fill in the tables below, then use Pyret to make the following displays. Record the code you used in the line below. The first table has been filled in for you.

1) A bar-chart showing how many puppies are fixed or not.

What Rows?	Which Column(s)?	What will you Create?
puppies	fixed	bar-chart

code: bar-chart(filter(filter(animals-table, is-dog), is-young), "fixed")
2) A pie-chart showing how many heavy dogs are fixed or not.

| What Rows? | Which Column(s)? | What will you Create? |
| :--- | :--- | :--- | :--- |
| | | |

code:
3) A histogram of the number of weeks it takes for a random sample of animals to be adopted.

| What Rows? | Which Column(s)? | What will you Create? |
| :--- | :--- | :--- | :--- |
| | | |

code:
4) A box-plot of the number of pounds that kittens weigh.

| What Rows? | Which Column(s)? | What will you Create? |
| :--- | :--- | :--- | :--- |
| | | |

code: \qquad
5) A scatter-plot of a random sample using species as the labels, age as the x-axis, and weeks as the y-axis.

| What Rows? | Which Column(s)? | What will you Create? |
| :--- | :--- | :--- | :--- |
| | | |

code: \qquad
6) Describe your own grouped sample here, and fill in the table below.

What Rows?

Data Cycle: Analyzing Categorical Data

Use the Animals Starter File to analyze categorical data with the data cycle.
Question Type
(circle one):
Lookup
Arithmetic
Statistical

Samples from My Dataset

Think back to when we defined grouped samples from the Animals Table, like "puppies", "old cats", etc. What grouped samples would be useful for your dataset? List a few of these in the first column.
Then, for each one, define a function that will identify if a row r is in the subset. Hint: you can always use a blank design recipe page.

| Grouped Sample | A function that returns true if a row r is in the subset |
| :--- | :--- | :--- |
| fun | |
| end | |
| fun | |
| end | |
| | $(r):$ |

\qquad
end
fun \qquad (r):
end
fun \qquad (r):
end

The Design Recipe

Write helper functions for your dataset, which you can use to define grouped samples. Since all helper functions will consume Rows, their Domains have already been filled in for you.

Directions: Define a function called \qquad , which consumes a Row of the \qquad
table and \qquad .

Contract and Purpose Statement

Every contract has three parts...
\#
::
$(r \underset{\text { Domain }}{\text { : : Row }}$
-> \qquad
\# what does the function do?

Examples

Write some examples, then circle and label what changes...
examples:

\qquad 1) is		what the function produces
) is	
end function name	input(s)	what the function produces
Definition		

Write the definition, giving variable names to all your input values...
fun \qquad 1 \qquad):
and what the function does with those variable(s)
end

Directions: Define a function called \qquad , which consumes a Row of the \qquad
table and \qquad .

Contract and Purpose Statement

Every contract has three parts...

\#	$:: \quad$ (r : $:$ Row)	-> Boolean
function name	Domain	Range
\#		
	what does the function do?	
Examples		

Write some examples, then circle and label what changes...

examples:

end

"Trust, but verify ..."

This page requires that you also open the Trust but Verify Starter File.
A "helpful" Data Scientist gives you access to the following function:
\# fixed-cats : : Table -> Table
\# consumes a table of animals, and produces a table containing only cats that have been fixed, sorted
from youngest-to-oldest
You can use the function, but you can't see the code for it! How do you know if you can trust their code?

- You could make a verification subset that contains one of every species, and make sure that the function filters out everything but cats.
- You could make sure this subset has multiple cats not already ordered youngest-to-oldest, and make sure the function puts them in the right order.

1) What other qualities would this subset need to have?
2) Create your verification subset! In the space below, list the name of each animal in your subset.

Name

"Trust, but verify..." (2)

This page requires that you also open the Trust but Verify Starter File.
A "helpful" Data Scientist gives you access to the following function:
\# old-dogs-nametags :: Table -> Table
\# consumes a table of animals, and produces a table containing only dogs 5 years or older, with an extra column showing their name in red
You can use the function, but you can't see the code for it! How do you know if you can trust their code?

1) What qualities would a verification subset need to have?
2) Create your verification subset! In the space below, list the name of each animal in your subset.

Name

We listened to more than 3 hours of US Congress testimony on facial recognition so you didn't have to go through it
Long story short: Models are ineffective, racist, dumb...
Katyanna Quach Wed 22 May 2019 // 23:50 UTC
ANALYSIS AI experts, lawyers, and law enforcement urged US Congress to regulate the use of facial recognition technology during a hearing held by the House Committee on Oversight and Reform on Wednesday, May 22, 2019.
The technical issues and social impacts of using AI software to analyse images or videos are well known. There have been repeated reports of how inaccuracies lead to people being misidentified in research and in real life. San Francisco just passed an ordinance banning the local government using facial recognition technology.
In some cases, like the experiment conducted by the American Civil Liberties Union's (ACLU), a nonprofit based in New York, that showed Amazon Rekognition incorrectly matched members of the US Congress to criminal mugshots, the effects have been minimal. It's simply absurd for elected politicians to be wanted criminals. But what happens when the technology is turned on civilians who have less power?
At a hearing of the House Committee on Oversight and Reform on Wednesday, Joy Buolamwini, founder of Algorithmic Justice League, an activist collective focused on highlighting the shortcomings of facial recognition, found that commercial computer models struggled most when it came to recognizing women with darker skin. IBM's system was incorrect for 34.7 per cent of the time when it came to identifying black women, she said...
The problem boiled down to biased training datasets, Buolamwini told the House committee. Al systems perform worse on data that they haven't seen before. So, if most datasets mainly represent white men then it's not surprising that they find it difficult when faced with an image of women of colour.
When it comes to databases of mugshots, however, the reverse is true. Black people are overrepresented in mugshot databases, explained Clare Garvie, Senior Associate at Georgetown University Law Center's Center on Privacy \& Technology. If law enforcement are using these flawed models to target the group of people that it struggles to identify most then it will undoubtedly lead to police stopping and searching the wrong people. "It's a violation of the first and fourth amendment," Garvie said during the hearing.

Law enforcement and lack of transparency

Cedric Alexander, the former president of the National Organization of Black Law Enforcement Executives who was also a witness at the hearing, estimated that at least a quarter of law enforcement agencies across the US use facial recognition to some degree.

Police from Washington County and Orlando are an example of some bureaus that are using Rekognition. Michael Punke, Amazon's VP of Global Public Policy, said at the time it has "not received a single report of misuse by law enforcement." It's difficult to verify that claim, however, considering that the police haven't been transparent about how it's used.
It's all done in secrecy, according to testimony. Elijah Cummings, the chair of the Oversight Committee, said that 18 states had shared data like passport photos or driver licenses with the FBI without explicit consent. When the witnesses were pressed with questions on what kind of information law agencies share with one another, nobody knew.
Neema Guliani, senior legislative counsel for the ACLU, took a tough stance and called for a moratorium on the technology. She urged the committee to "take steps to halt the use of face recognition for law enforcement and immigration enforcement purposes until Congress passes a law dictating what, if any, uses are permissible and ensures that individuals' rights can be protected." Unregulated use of the technology could also potentially lead to an "Orwellian surveillance state," where citizens are constantly tracked Guliani said. In the opening statement, Cummings said there are about 50 million surveillance cameras in the US, and that half of all American adults are probably part of facial recognition databases and they don't even know it.
Andrew Ferguson, professor of law at the University of the District of Columbia, agreed that the Congress needed to act now to prohibit facial recognition until Congress establishes clear rules. "Unregulated facial recognition should not be allowed to continue unregulated. It is too chilling, too powerful. The fourth amendment won't save us. The Supreme Court is trying to make amendments but it's not fast enough. Only legislation can react in real time to real time threats," he warned.
Alexander was more cautious about a blanket ban on the technology, however. He believed that there were still ways that law enforcement could positively use facial recognition. "There is a place for the technology, but the police need to be trained properly. They can't just be passed the technology by software companies." Effective policing is about building relationships in the local community, and it can't afford the effects of misidentifying people. How can we utilise the technology, whilst developing some standards?, he asked.

Benchmark tests simply aren't good enough

The National Institute of Standards and Technology (NIST), a laboratory part of the US Department of Commerce, is currently conducting official benchmark tests for commercial facial recognition systems. But they need to be better, Buolamwini said. She brought up the issue of what she called "pale male datasets". "The gold standard benchmark dataset is biased and can lead to a false understanding of progress," she said.
Even if there was a facial recognition system with near-perfect accuracy in the testing phase, it doesn't solve the problem that most data used by law enforcement is often grainy and low resolution. A recent report by Georgetown University found that in some cases police were even trying to match people by composite artist sketches.
"Faces maybe the final frontier of privacy," Buolamwini said.
The hearing took place at the same time as Amazon shareholders tried to stop Rekognition being sold to law enforcement. The proposal was defeated, but the vote tallies were not immediately disclosed. © The Register.

Can Software be Biased?

This page is designed as a reflection on either this article, summarizing US Congress Testimony on Artificial Intelligence or this video The Coded Gaze: Bias in Artificial Intelligence.

1) Describe three concerns experts and activists have raised about Artifical Intelligence.
2) What are some solutions that would address these concerns?
3) How would you test whether or not a facial recognition system was equally accurate for everyone?

Threats to Validity

Threats to Validity can undermine a conclusion, even if the analysis was done correctly.

Some examples of threats are:

- Selection bias - identifying the favorite food of the rabbits won't tell us anything reliable about what all the animals eat.
- Study bias - If someone is supposed to assess how much cat food is eaten each day on average, but they only measure how much cat food is put in the bowls (instead of how much is actually consumed), they'll end up with an over-estimate.
- Poor choice of summary - Suppose a different shelter that had 10 animals recorded adoption times (in weeks) as 1, 1, 1, 7, 7, 8, 8, 9, 9, 10. Using the mode (1) to report what's typical would make it seem like the animals were adopted more quickly than they really were, since 7 out of 10 animals took at least 7 weeks to be adopted.
- Confounding variables - Some shelter workers might prefer cats, and steer people towards cats as a result. This would make it appear that "cats are more popular with people", when the real variable dominating the sample is what workers at the shelter prefer.

Identifying Threats to Validity

Some volunteers from the animal shelter surveyed a group of pet owners at a local dog park. They found that almost all of the owners were there with their dogs. From this survey, they concluded that dogs are the most popular pet in the state.

What are some possible threats to the validity of this conclusion?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The animal shelter noticed a large increase in pet adoptions between Christmas and Valentine's Day. They conclude that at the current rate, there will be a huge demand for pets this spring.

What are some possible threats to the validity of this conclusion?

Identifying Threats to Validity (2)

The animal shelter wanted to find out what kind of food to buy for their animals. They took a random sample of two animals and the food they eat, and they found that spider and rabbit food was by far the most popular cuisine!

Explain why sampling just two animals can result in unreliable conclusions about what kind of food is needed.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A volunteer opens the shelter in the morning and walks all the dogs. At mid-day, another volunteer feeds all the dogs and walks them again. In the evening, a third volunteer walks the dogs a final time and closes the shelter. The volunteers report that the dogs are much friendlier and more active at mid-day, so the shelter staff assume the second volunteer must be better with animals than the others.

What are some possible threats to the validity of this conclusion?

Fake News

There are six separate, unrelated claims below, and ALL OF THEM ARE WRONG! Your job is to figure out why by looking at the data.

	Data	Claim	What's Wrong
1	The average player on a basketball team is 6 ' 1 ".	"Most of the players are taller than 6!"	
2	Linear regression found a positive correlation ($r=0.42$) between people's height and salary.	"Taller people are more qualified for their jobs."	
3		"According to the predictor function indicated here, the value on the x-axis will predict the value on the y axis 63.6% of the time."	
4		"According to this bar chart, Felix makes up a little more than 15% of the total ages of all the animals in the dataset."	
5		"According to this histogram, most animals weigh between 40 and 60 pounds."	
6	Linear regression found a negative correlation ($r=-0.91$) between the number of hairs on a person's head and their likelihood of owning a wig.	"Owning wigs causes people to go bald."	

Lies, Darned Lies, and Statistics

1) Using real data and displays from your dataset, come up with a misleading claim.
Data Claim Why it's wrong

Selection Bias or Biased Study?

The school newspaper ran an article stating that chicken was more popular than pork in the East Village.

Kendell thinks the study was biased.

Would you rather eat pork or delicious crispy fried chicken? That's such a leading question! It encouraged people to pick chicken. I bet the results would have been different if they had asked about crispy bacon!

Carson thinks the study suffered from selection bias.

One of the survey sites was outside of a mosque?! Muslims don't even eat pork!
Who's right? How do you know?

Identifying Threats to Validity (3)

Data scientists want to know if listening to music or podcasts reduces symptoms of stress in individuals.

- They conducted a study of 1,000 people who were brought into a laboratory office for testing.
- While wearing a heart-rate monitor, participants were asked to listen to either music or a podcast of their choosing while completing a series of complicated puzzles.
- The data scientists discovered that on average, participants who listened to music had a 5% lower heart rate while completing the tasks than those who listened topodcasts.

Before publishing their findings, the data scientists have asked you to review their claim. In the space below, indicate possible threats to validity faced by this study.

Data Fallacies to Avoid

Cherry Picking
Selecting results that fit your claim and excluding those that don't.

Cobra Effect

Setting an incentive that accidentally produces the opposite result to the one intended. Also known as a Perverse Incentive.

Sampling Bias

Drawing conclusions from a set of data that isn't representative of the population you're trying to understand.

Regression Towards the Mean
When something happens that's unusually good or bad, it will revert back towards the average over time.

Overfitting

Creating a model that's overly tailored to the data you have and not representative of the general trend.

Data Dredging
Repeatedly testing new hypotheses against the same set of data, failing to acknowledge that most correlations will be the result of chance.

Falsely assuming when two events appear related that one must have caused the other.

Gambler's Fallacy

Mistakenly believing that because something has happened more frequently than usual, it's now less likely to happen in future (and vice versa).

Simpson's Paradox
When a trend appears in different subsets of data but disappears or reverses when the groups are combined.

Interesting research findings are more likely to be published, distorting our impression of reality.

Survivorship Bias
Drawing conclusions from an incomplete set of data, because that data has 'survived' some selection criteria.

Gerrymandering

Manipulating the geographical boundaries used to group data in order to change the result.

Hawthorne Effect

The act of monitoring someone can affect their behaviour, leading to spurious findings. Also known as the Observer Effect.

McNamara Fallacy
Relying solely on metrics in complex situations and losing sight of the bigger picture.

Danger of Summary Metrics

Only looking at summary metrics and missing big differences in the raw data.

Threats to Validity Rubric

	Wow!	Getting There	Needs Improvement
Selection bias	The research plan lays out clearly and specifically how information will be gathered from a non- representative sample of the population.	The research plan lays out how information will be gathered from a non-representative sample of the population, but is lacking in detail and specificity.	The research plan does not address how information will be gathered from a non-representative sample of the population.
Bias in the study design	The study is clearly biased, with "loaded" questions that lead to misrepresentation of true opinions.	The study includes some bias, but it is unclear how the plan will lead to misrepresentation of true opinions.	The study design does not include bias.
Poor choice of summary data	The research plan includes extreme outliers that will shift the results of the analysis in ways that do not represent the population as a whole.	The research plan includes some outliers, but they are perhaps not adequately extreme to shift the results and misrepresent the population.	The research plan does not include extreme outliers.
Confounding variables	The study overlooks factors that clearly influence a relationship, leading to invalid claims.	The study overlooks factors that might influence a relationship, perhaps leading to invalid claims.	The study does not include any confounding variables.
Discuss Conclusions	The concluding discussion clearly articulates how all of the threats to validity cause problems to the study's conclusions.	The concluding discussion only articulates how some of the threats caused problems or is lacking in detail and evidence / analysis.	The concluding discussion is lacking in detail and evidence. Understanding of how threats to validity influence a study is not demonstrated.
Good Data Scientists would...	Clear explanations are provided of what changes could be made to minimize the threats.	Some explanation is provided of what changes could be made to minimize threats, but more details are needed.	Understanding of how to revise the study to minimize threats is not demonstrated.

Our Research Plan

With your partner, respond to the prompts below. Note: You can consider this page a rough draft of the final project that you will eventually produce.

1) Our statistical question:
\qquad
\qquad
2) Our research plan in brief: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3) How we will incorporate selection bias:
\qquad
\qquad
\qquad
\qquad
4) How we will incorporate bias in the study design:
\qquad
\qquad
\qquad
5) How we will incorporate poor choice of summary data: \qquad
\qquad
\qquad
\qquad
\qquad
6) How we will incorporate confounding variables:

Major Threats to Validitiy

- Selection Bias - Data was gathered from a biased sample of the population. This is the problem with surveying cat owners to find out which animal is most loved!
- Bias in the Study Design - Data was gathered using a "loaded" question like "Since annual vet care comes to about \$300 for dogs and only about half of that for cats, would you say that owning a cat is less of a burden than owning a dog?" This could easily lead to a misrepresentation of people's true opinions.
- Poor Choice of Summary Data - Even if the selection is unbiased, sometimes outliers are so extreme that they make the mean completely useless at best - and misleading at worst.
- Confounding Variables - A study might find that cat owners are more likely to use public transportation than dog owners. But it's not that owning a cat means you drive less: people who live in big cities are more likely to use public transportation, and also more likely to own cats. More examples of confounding variables can be found in the correlations lesson: Correlation Does Not Imply Causation!.

Analysis of Research Plan Predicted Outcomes

Respond to the prompts below with your partner.

1) How will the validity of your conclusions be impacted by Selection Bias?
\qquad
\qquad
\qquad
2) What would a good data scientist change to minimize Selection Bias? \qquad
\qquad
\qquad
3) How will the validity of your conclusions be impacted by Bias in the Study Design?
\qquad
\qquad
\qquad
4) What would a good data scientist change to minimize Bias in the Study Design?
\qquad
\qquad
\qquad
5) How will the validity of your conclusions be impacted by Poor Choice of Summary Data?
\qquad
\qquad
\qquad
6) What would a good data scientist change to minimize Poor Choice of Summary Data?
\qquad
\qquad
\qquad
7) How will the validity of your conclusions be impacted by Confounding Variables?
\qquad
\qquad
\qquad
8) What would a good data scientist change to minimize Confounding Variables?
\qquad
\qquad
\qquad

Rubric: Research Project 1

\(\left.$$
\begin{array}{l}\text { About this Dataset } \\
\begin{array}{|l|l|l|}\hline \text { Wow! } & \text { Getting There } & \text { Needs Improvement }\end{array} \\
\hline \begin{array}{l}\text { I explained why this dataset is interesting to me, } \\
\text { others like me, and why others should care } \\
\text { about this data. I considered why the dataset } \\
\text { was collected, and what purpose it might serve. I } \\
\text { correctly identified all the rows, columns, and } \\
\text { types in my dataset. }\end{array}\end{array}
$$ $$
\begin{array}{l}\text { I explained why this dataset was interesting to } \\
\text { me and at least one other person/group, and } \\
\text { shared something about where it came from. I } \\
\text { correctly identified most of the rows, columns, } \\
\text { and types in my dataset. }\end{array}
$$ \quad \begin{array}{l}I explained why this dataset was

interesting to me, and shared

something about where it came

from. I correctly identified some\end{array}\right]\)| rows, columns, and types in my |
| :--- |
| dataset. |

My Questions

Wow!	Getting There	Needs Improvement
I had lots of questions by the end of the exploration, and I chose at least two that I thought were most interesting. I explained why I thought they were interesting, and wrote about grouped samples that might be good to explore when answering those questions.	I had a few questions by the end of the exploration, and I chose at least one that was interesting. I wrote about grouped samples that might be good to explore.	I picked a question, and wrote about grouped samples.

Analysis: Quantity, Variety, and Connectedness of Displays

Wow!	Getting There	Needs Improvement
I used a variety of categorical and quantitative displays, including at least 10 different displays in my project. I gave each display a descriptive title. I specified how the display changed my thinking and influenced the next display that I chose to make.	Throughout my project, I used a limited assortment of displays. I included at least 8 different displays in my project. Most of my displays were descriptively titled. I attempted to describe how the display changed my thinking and influenced the next display that I made - but my descriptions were unclear.	I included 4 or fewer displays in my project. The displays did not include titles, or the titles were not descriptive. I did not adequately describe how each display changed my thinking.

Discussion: Threats to Validity, Ethical Implications, Questions for Future Study

$\left.\begin{array}{|l|l|l|}\hline \text { Wow! } & \text { Getting There } & \text { Needs Improvement } \\ \hline \begin{array}{l}\text { I explained my findings clearly and in detail. I } \\ \text { also wrote about possible threats to validity, } \\ \text { considering all of the different threats we } \\ \text { learned about in the context of diversity, bias, } \\ \text { power, and discrimination. I explained why (or } \\ \text { why not) the results were enough to make a } \\ \text { strong claim. I thought about the ethical } \\ \text { implications of collecting this data, or how my } \\ \text { research might be used in good or bad ways. I } \\ \text { wrote about how I would continue this } \\ \text { research, with more data and/or more }\end{array} & \begin{array}{l}\text { I explained my findings, and wrote about some } \\ \text { threats to validity and ethical questions. I } \\ \text { considered some issues regarding diversity, } \\ \text { bias, power and discrimination - but not all of } \\ \text { them. I wrote about possible ways to continue } \\ \text { the research. }\end{array} & \begin{array}{l}\text { I talked about my findings, but only } \\ \text { discussed some threats to validity, } \\ \text { ethics, or possible future research. }\end{array} \\ \text { Other parts were missing. }\end{array}\right\}$

Additional Teacher Feedback

Rubric: Research Project 2

Students:-In the left hand column, record the title of each display you made. Write titles in the order in which they appear in your slide deck. If you need additional copies of this page, ask your teacher.

Analysis:

Wow!	Getting There	Needs Improvement
I interpreted the display accurately and thoughtfully. I explained how the display helps me answer the question I chose to study.	I interpreted the display accurately. I attempted to connect the display to my research question, but that connection was sometimes unclear.	My interpretation of the display is inaccurate. It was unclear how the display connected to or answered my research question.

Display	Rating	Teacher Feedback
	-Wow \square Getting There \square Needs Improvement	
	-Wow - Getting There \square Needs Improvement	
	-Wow \square Getting There \square Needs Improvement	
	-Wow - Getting There \square Needs Improvement	
	-Wow - Getting There \square Needs Improvement	
	-Wow - Getting There \square Needs Improvement	
	-Wow - Getting There \square Needs Improvement	
	-Wow - Getting There \square Needs Improvement	
	-Wow \square Getting There \square Needs Improvement	

Exploring the States Dataset

Open the Preview: State Demographics Starter File.
Then, click "Run" and type states-table into the Interactions Area on the right to see the dataset.

What do you Notice about this dataset?

What do you Wonder about this dataset?

1) What code will produce a table showing the number of states in each region? \qquad
2) Which states do you think have the most people? \qquad
3) What code will produce a table containing the five states with the largest population in 2020 ?
4) Which states do you think have the most poverty? \qquad
5) What code will produce a table containing the ten states with the highest $\%$ of people in poverty?
6) What code will produce a table containing the states with the lowest median income?
7) What code will produce a table containing the states with the lowest per-capita ("average" or "mean") income?

What does it mean if a state has a higher per-capita income than median-income? \qquad

The two lines of code under\# Def ine some rows extract rows 0 and 1 from the table, and define them as a labama and alaska.
8) Type a labama into the Interactions Area. What do you get back? \qquad
9) Underneath the definition of those rows, add a new definition for california and click "Run", so that Pyret reads your new definition.
10) Add a definition for your own state, then click "Run" and test it out in the Interactions Area!
11) Add any additional Notices or Wonderings you have about this dataset to the table at the top.

Looking for Patterns

Open the Preview: State Demographics Starter File.

Part 1

1) What columns do you think might be related to one another? (e.g. - is the number of veterans related to the amount of land-area? Is the population in 2010 related to the population in 2020?) List three possible relationships below.

2) Use the Contract above to make a scatter-plot for the first relationship you wrote above. (Use "state" as the label, so that clicking on a point will show you which state you're looking at.)
a. If there's a pattern in this scatter-plot, what does that mean? If there isn't, what does that mean? \qquad
b. In your own words, describe the pattern you see in the scatter plot so someone else could sketch it. \qquad
\qquad
3) Make a scatter-plot for the second relationship you wrote.
a. If there's a pattern in this scatter-plot, what does that mean? If there isn't, what does that mean? \qquad
b. In your own words, describe the pattern you see in the scatter plot so someone else could sketch it. \qquad
\qquad
4) Make a scatter-plot for the third relationship you wrote.
a. If there's a pattern in this scatter-plot, what does that mean? If there isn't, what does that mean? \qquad
b. In your own words, describe the pattern you see in the scatter plot so someone else could sketch it. \qquad

Part 2

Wait to complete this until after diving deeper into statistical relationships!
Revisit the three scatter plots you made and add the following labels to the descriptions you wrote in Question 1:

- Place an "L" by any relationships that you think might be linear.
- Place a "P" by any relationships that appear to be positive.
- Place an " N " by any relationships that appear to be negative.
- Place an " S " by the strongest-looking relationship.
- Place a "W" by the weakest-looking relationship.

Identifying Form, Direction and Strength (Matching)

Match the description (left) with the scatter plot (right).
Note: The computer won't tell us if the relationship we see in a scatter plot is linear, so we must train our eyes to decide this ourselves. For linear relationships, we should train our eyes to assess their direction and get a feel for their strength, rather than relying completely on what numbers the computer reports.

Identifying Form, Direction and Strength

What do your eyes tell you about the Form, Direction, \& Strength of these displays?
Note: If the form is nonlinear, we shouldn't report direction - a curve may rise and then fall.

Build a Model from Samples: College Degrees v. Income

Open the Preview: State Demographics Starter File.

1) Record the pct-college-or-higher and median-income values for the a labama and a laska rows, as (x, y) pairs below:

2) Using the space below, compute the equation of the line passing between these two points. This line will be your linear model (also known as the "predictor function", or "line of best fit"), which predicts median-income as a function of pct-college-or-higher.
3) Write the complete model below (in both Function and Pyret notation):
$\operatorname{al}-\mathrm{ak}(x)=$ \qquad $x+$ \qquad fun al-ak(x): (\qquad * x$)+$ \qquad end

- Return to your copy of the starter file and add the code you just wrote to the Definitions Area.
- Click "Run". (If there are any errors or warnings, fix them and click "Run" again.)
- In the Interactions Area, try plugging in the pct-college-or-higher value for Alabama by typing al-ak (22.6)

4) How well does it predict the correct median income for Alabama? \qquad What about Alaska? \qquad Consider: If it doesn't predict it perfectly, why might that be?

Try different pct-college-or-higher values from other states, to see how well our Alabama-Alaska model fits the rest of the country.
5) Identify a state for which this model works well: \qquad
6) Identify a state for which this model works poorly: \qquad
7) What median income does this model expect a state without ANY college graduates (0\%) to earn? \qquad

How could we Measure Whether a Model is a Good Fit?

id	Days
Cheerios found on the floor	a
1	5
b	2
2	c
3	6
d	e
7	8
5	6
f	g
2	8
7	8
h	i
5	5
9	10
j	

1) Do you think $f(x)$ or $g(x)$ is a better model for this data? \qquad
2) What makes you think that? \qquad
\qquad
\qquad
\qquad
3) What could we measure, to calculate how much better of a model it is? \qquad
\qquad
\qquad
\qquad
4) Neither of these models is the best possible model! What would have to be true of a third model, for us to know that it was a better fit than these two? \qquad
\qquad
\qquad
\qquad

Fit a Model: College Degrees v. Income

Open the Fitting a Model: State Demographics Starter File and Save a Copy of the file that's just for you.

The al-ak Model

Type fit-model(states-table, "state", "pct-college-or-higher", "median-income", al-ak) in the Interactions Area, then find the points for AL and AK along the predictor line. Hint: You know their coordinates and they will help you know where to look!

1) What do you Notice?
2) What do you Wonder?
3) Find S in the upper left corner. What is the S value (the number after S)?

Other Models

In the definitions area, find the section titled Define some other models by modifying al-ak.

- For now, all three definitions in this section are exactly the same as al-ak.
- You will be changing them according to the directions below.

4) If you wanted the model to be less steep, what slope could you use? \qquad

- Change the definition for less-steep to use the slope you wrote above.
- Click "Run" to load your new definition. In the Interactions Area type:
fit-model(states-table, "state", "pct-college-or-higher", "median-income", less-steep)
- What is the S value of less-steep ? \qquad
- Identify a y-intercept that would make the model fit the data better:
- Adjust the definition to use the new y-intercept and click "Run".
- Hit the up arrow in the Interactions Area and click return/Enter to fit the model again.
- What is the S value of less-steep now? \qquad

5) Change the definition of negat ive so that it models the data with a slope that is negative.

- Click "Run" and type the code to fit this model to the data.
- What slope did you use? \qquad What is the S value now? \qquad

6) Change the definition of hor izontal so that it draws a horizontal model. Click "Run" and fit this model. What is the S value? \qquad
7) Change the y-intercept so that the horizontal line passes through more of the points. Click "Run" and fit this model.

- What y-intercept did you use? \qquad What is the S value now? \qquad

8) What do you think S tells us? \qquad
\qquad
\qquad
\qquad

What does \boldsymbol{S} tell us about the fit of these models?

For each model below, decide whether the fit is "poor", "ok", or "good". Then rank the models from 1 (best fit) to 8 (worst fit).
How good is the model? Ranking

1 A data scientist is working with data from animals at a shelter.

- The range of days to adoption in this dataset are from 0 to 400.
- An S value of 300 means predicted adoption times could be off by 300 days.

This is a(n) \qquad model for the dataset.

2 A student is exploring a dataset on climate change.

- The range of Arctic Sea Ice is from 3,920,000 to 7,670,000 square kilometers
- An S value of 300 means predicted Arctic Sea Ice coverage could be off by 300 square kilometers.

This is $\mathrm{a}(\mathrm{n})$ \qquad model for the dataset.
poor, ok, good

3 A data scientist is working with data from US public schools.

- The range of graduates per school per year is 2 to 2003.
- An S value of 300 means predicted graduate values could be off by 300 students.

This is $\mathrm{a}(\mathrm{n})$ \qquad model for the dataset.
poor, ok, good
4 A student is exploring a dataset on earthquakes.

- The range of earthquake depths in this dataset are from 4200 m to 664000 m .
- An S value of 300 means predicted earthquake depths could be off by 300 meters.

This is $\mathrm{a}(\mathrm{n})$ \qquad model for the dataset.

5 A student is exploring a dataset on arrests in Los Angeles.

- The age range in this dataset is from 0 to 92.
- An S value of 1 means predicted ages could be off by 1 year.

This is $\mathrm{a}(\mathrm{n})$ \qquad
poor, ok, good model for the dataset.

6 A data scientist is working with data about snowflakes.

- The range of snowflake weights is from 0.001 grams to 0.02 grams.
- An S value of 1 means predicted values could be off by 1 gram.

This is $\mathrm{a}(\mathrm{n})$ \qquad model for the dataset.

7 A data scientist is working with data from animals at a shelter.

- The range of ages is from 0.5 years to 16 years.
- An S value of 1 means predicted ages could be off by 1 year.

This is a(n) \qquad model for the dataset.

8 A student is working with a dataset of adult blue whales.

- The range of weights is 200,000 to 330,000 pounds.
- An S value of 1 means predicted weights could be off by 1 pound.

This is $\mathrm{a}(\mathrm{n})$ \qquad model for the dataset.
poor, ok, good

Better Modeling: College Degrees v. Income

Open your copy of the Fitting a Model: State Demographics Starter File.

Build a Model through Trial \& Error

Find\# Define some rows in the Definitions Area.
Add two new definitions for MA (row 21) and NV (row 28), using the definitions for a laska and a labama as a model.

1) Record the college-or-higher and median-income values for MA and NV, as (x, y) pairs below:

2) Derive the MA-NV model (using the same steps you followed to derive the AL-AK model on Fit a Model: College Degrees v. Income) and write it below (in both Function and Pyret notation), then fit the model and record the S-value:

fun ma-nv(x): \qquad * $x)$ + \qquad end $S:$ \qquad
3) Identify two other states that you think would make a better model: \qquad and \qquad .

- Add two new definitions for these states to your Fitting a Model: State Demographics Starter File.

4) Record the college-or-higher and median-income values for these states, as (x, y) pairs below:

5) Derive your model and write it below (in both Function and Pyret notation), then fit the model and record the S-value:
other $(x)=$ \qquad $x+$ \qquad fun other(x): \qquad * x$)+$ \qquad end
$S:$ \qquad
6) Adjust the slope and y-intercept of your model to get the smallest S possible. Write the best model you find (and corresponding S) below:

$$
\operatorname{best}(x)=\frac{x+}{\text { slope }}
$$

fun best(x): \qquad * $x)$ + \qquad end $S:$ \qquad

Optimizing and Interpreting Linear Models

Open your copy of the Fitting a Model: State Demographics Starter File.

Build a Model Computationally

lr-plot computes the optimal linear model using all of the data points.

1) Evaluate lr-plot(states-table, "state", "pct-college-or-higher", "median-income"). What is S ? \qquad
2) On the line below, write the optimal linear model that was computed through linear regression: $\operatorname{optimal}(x)=$ \qquad x+ \qquad fun optimal(x): \qquad * $x)+$ \qquad end

Interpret the Model

We started with a model based on Alabama and Alaska. We can interpret the slope and S-value below:

The	Alabama-Alaska sensible name	model predicts that a 1	percent [x-axis units]	increase in
	percent college degrees [x-axis]	is associated with a	5613 dollar [slope, y-units]	increase increase / decrease
	median household income [y-axis]	. Based on the S - value of	$\underset{\substack{\sim \\ \sim \\ S 6 \text {-value }}}{ }$, this model fits
	ally, really poorly well, decently, poorly, etc.			

3) Describe the optimal model YOU created via linear regression:

The \qquad model predicts that a 1 \qquad increase in sensible name is associated with a \qquad in
$\frac{\text { percent college degrees }}{[x \text {-axis }]}$ is median household income .With an S-value of \qquad this model fits \qquad .
4) What does the slope of this linear model tell us? \qquad
5) What does the y-intercept of this linear model tell us? \qquad
6) Suppose a state goes from 10% to 11% college graduation. According to this model,

- What kind of change would we expect to see in the median household income? \qquad
- What if it goes from 50% to 51% ? \qquad
- What if it goes from 90% to 91% ? \qquad

7) Does this model predict the same increase in income for every additional 1% college-or-higher ?Why or why not? \qquad
\qquad
\qquad

Which Form is Best?

For each set of data provided below,

- Decide which form of the line would be the easiest to build from the available information.
- Write a definition of the linear model in that form.
- Translate the definition into Pyret notation.

1

Linear Model:
Your model slope-intercept, point-slope, or standard form - which ever is easiest!
fun $f(x)$: \qquad end

Linear Model:
Your model slope-intercept, point-slope, or standard form - which ever is easiest!
fun $f(x)$: \qquad end

Linear Model:
\qquad end

Linear, Non-linear, or Bust?

Decide whether each scatter plot appears to be best modeled by a linear function, a nonlinear function or there is no apparent relationship.

Defining a Linear Function from Two Points

The guided three-step process is designed to help you calculate slope and y-intercept from a pair of points.

Define the linear function through ($-2,5$) and ($3,-10$).

Step 1: Calculate the slope of the line by replacing the variables in the equation below with their corresponding coordinates.

$$
\text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-}{-}=\square \quad \text { Hint: } y_{2}=-10
$$

Step 2: Use the slope intercept form of the line to calculate the y-intercept.

- replace m with the slope we just calculated
- replace x and y with the values from the first point: ($-2,5$)
- solve for b

Slope-intercept form of the line: $y=m x+b$
\qquad $=$ \qquad $+b$
\qquad $=b$
Note: We could also have done Step 2 using the second point: (3, - 10). Let's do that now to make sure we get the same result!
\qquad $=$ \qquad $+b$
\qquad $=b$

Step 3: Use the slope and y-intercept we calculated to write our function definition!
$f(x)=$ \qquad $x+$ \qquad

Define the linear function through ($-5,2$) and (3,6).

Step 1: Calculate slope.
slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-}{-}=\square$
Step 2: Calculate the y-intercept.
Hint: You can use either point. Which would be simpler?
\qquad $=b$

Step 3: Write the function definition!
$f(x)=$ \qquad $x+$ \qquad

Build a Model from Samples: College Degrees v. Income (Scaffolded)

Open the Preview: State Demographics Starter File.

1) Record the pct-college-or-higher and median-income values for the a labama and a laska rows, as (x, y) pairs below:

2) We want to understand how change (Δ) in the percent of the population that attended college relates to change (Δ) in the median income.

Compute Δ median-income $=$ \qquad - \qquad $=$ \qquad
Compute Δ pct-college-or-higher $=$ \qquad $-$ \qquad $=$ \qquad

Compute the slope/rate of change between AL and AK: $\frac{\Delta \text { median-income }}{\Delta \text { pct-college-or-higher }}=$ \qquad
\qquad

Based solely on data from Alabama and Alaska, we are seeing that a \qquad percent increase in college graduates among the population translates to a \qquad dollar increase in median income.
Δ median-income .
3) Now, let's use the slope intercept form of the line to calculate the y-intercept of the line passing through AK and AL.
A) Replace m with the slope we just calculated.
B) Replace x and y with the relevant values from the AK row: (\qquad
\qquad)
C) Solve for b. \qquad $=$ \qquad \times \qquad $+\quad b$
$b=$ \qquad
4) Write the complete model below (in both Function and Pyret notation):
$a l-a k(x)=$ \qquad x+ \qquad fun al-ak(x): (\qquad * x$)+$ \qquad end

- Type your function into the Definitions Area on the left, modifying the existing function $f(x)$.
- Then click "Run", and make sure you fix any errors or warnings.
- In the Interactions Area, try plugging in the pct-college-or-higher value for Alabama by typing f(22.6)

5) How well does it predict the correct median income for Alabama? \qquad What about Alaska? \qquad
Consider: If it doesn't predict it perfectly, why might that be?

Try different pct-college-or-higher values from other states, to see how well our Alabama-Alaska model fits the rest of the country.
6) Identify a state for which this model works well: \qquad
7) Identify a state for which this model works poorly: \qquad
8) What median income does this model expect a state with zero college graduates to earn? \qquad

Graphing Linear Models

Sketch three of your linear models from Build a Model from Samples: College Degrees v. Income, Fit a Model: College Degrees v. Income, and Better Modeling: College Degrees v. Income on the scatter plots below.
Then label the slope, y-intercept, and S value of each model!
1)

Slope
y-Intercept
\qquad
2)
3)
y-Intercept

Building More Linear Models

Open your copy of Fitting a Model: State Demographics Starter File. If you haven't already, Save a Copy now.

1) Which two columns will you explore? \qquad and \qquad .
2) Fill in the code to make a scatter plot exploring the relationship between those columns:
scatter-plot(states-table, "state", \qquad , \qquad)
3) Pick two states to use for your first model: \qquad and \qquad .
4) Based on these two points, define your model in Function and Pyret Notation:

Function Notation		Pyret Notation
$x+\ldots$	fun $f(x):(\ldots \times)+\ldots$	

5) Type this model into Pyret, and fit it to your data use fit-model. What S value did you get? \qquad
6) What's the best model you can build? In the table below, record your models and the S values you got for them, then draw a star next to the one with the best S-value.

Model (Function or Pyret Notation - whatever you prefer!) S

What does this model actually mean? Try completing the sentence below:
This model predicts that a 1 \qquad increase in \qquad is associated with a
\qquad in Based on the Sof
\qquad I would say this model fits \qquad .

Matching Point-Slope Form to Graphs

Point-Slope Form: $y-y_{1}=m\left(x-x_{1}\right) \quad m$: slope $\quad y_{1}: y$-coordinate of a point $\quad x_{1}: x$-coordinate of the same point

Each of the graphs below represents a line of best fit derived from some data. Match each definition below to the linear model it describes.
$y-7=-.5(x+4)$
$y+3=-4(x-2)$
$y+5=-0.25(x-1)$
$y-7=2(x-4)$
4

5

A

B

C

D

E

Matching Standard Form to Graphs

Each of the graphs below represents a line of best fit derived from some data. Match each definition below to the linear model it describes.
$x+3 y=3$
$-13 x+5 y=1$
$-9 x+15 y=6$
$-6 x+5 y=13$

1

2

3

4

5

A

B

C

D

E

Matching Slope-Intercept Form to Graphs

Slope-intercept form: $y=m x+b$
m : slope
b: y-intercept

Each of the graphs below represents a line of best fit derived from some data. Match each definition below to the linear model describes.
$f(x)=-5 x-2$
1

2

3
$j(x)=-\frac{1}{3} x-2$
4

A

B

C

D

E

Mixed Practice: Matching Graphs of Linear Functions to their Definitions

Each of the graphs below represents a line of best fit derived from some data. Match each equation on the left to its graphical representation on the right.

$$
7 x+8 y=84
$$

1

2
$y=\frac{2}{5} x-1$
$y-5=3(x-8)$
$f(x)=\frac{-2}{7} x-4$
4
$y+9=-\frac{3}{4}(x-2)$
5

A

B

C

D

E

Other Forms of Linear Models

For this page, you'll need to have the Fitting a Model: State Demographics Starter File open on your computer. If you haven't already, select Save a Copy from the "File" menu to make a copy of the file that's just for you.

1) Evaluate lr-plot(states-table, "state", "college-or-higher", "median-income"). What is the S ? \qquad
2) Interpret the results - what does that S tell us? \qquad
\qquad
\qquad
3) Write the Slope-Intercept Form of the optimal linear model below.
$y=$ \qquad x+ \qquad

Linear models can be expressed in several forms. In addition to Slope Intercept Form, there is also Standard (a.k.a "General Linear") Form and "Point-Slope" Form. Depending on what you want to do with a model, it can be more convenient to use one form instead of another!

Standard Form

$$
A x+B y=C
$$

Point-Slope Form

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

4) Write the Standard Form and Point-Slope Form of the optimal linear model below.

5) Choose another linear model you came up with. Which states did you use to build the model? \qquad
6) Write the Slope-Intercept Form of the optimal linear model below.

$$
y=\int_{\text {slope }} \mathrm{x}^{+} \mathrm{y}_{\text {-intercept }}
$$

7) Write the Standard Form and Point-Slope Form of that linear model below.

8) Which form is most useful to YOU, and why? \qquad
\qquad
\qquad
\qquad
\qquad

Exploring the Fuel Efficiency Dataset

For this page, you'll need to open the Fuel Efficiency Starter File on your computer. If you haven't already, select Save a Copy from the "File" menu to make a copy of the file that's just for you. Read the comments at the top of the file, which describe what each column in the dataset means.

Fitting Linear Models

1) Evaluate $A 15$, A45 and A75 in the Interactions Area. What model of car is used in all three rows?
2) At what three speeds is this model being tested in these rows?
3) Does there appear to be a relationship between speed and miles-per-gallon? \qquad .
4) Looking at the numbers in the table, describe its form (e.g. - linear, non-linear, or none) and strength (strong, moderate, or weak). If it appears to be linear, what is the direction? If it does not appear to be linear, describe its shape.
5) Use lr-plot(mpg-table, "model", "speed", "mpg") to find the optimal linear model. What is S for this model? \qquad Write the model below, in both math and Pyret notation.
$f(x)=$ \qquad $x+$ \qquad fun $f(x)$: \qquad * $x)$ + \qquad end
6) Is the best-possible linear model a good fit? \qquad .Why or why not? \qquad

Fitting Curves

7) Sketch your Ir-plot in the space below, showing the relationship between speed and mpg . Be sure to label your axes, and draw the linear model!

8) What do you Notice? \qquad
\qquad
\qquad
\qquad
9) What do you Wonder? \qquad
\qquad
\qquad
\qquad
10) Do you think a curve would fit better?
\qquad
11) Draw a curve on your scatter-plot, which shows the overall shape in the data. At what speed is the "peak"? \qquad
12) Based on your best-guess curve, what do you predict mpg would be for a new test run at 25 mph \qquad ? 60 mph \qquad ? 90 mph \qquad ?

What Kind of Model? (Descriptions)

Decide whether each situation sounds like it would be better modeled by a linear or quadratic function, and circle your answer.

1) A ball is dropped from the top of the Empire State Building, and it keeps dropping faster and faster. How far has the ball dropped after x seconds?

Linear

Quadratic
2) A car is 50 miles away, traveling at 65 mph . How far away is the car after each hour?

Linear
Quadratic
3) The data plan for a cell phone bill costs $\$ 5 / \mathrm{gb}$, plus $\$ 15 / \mathrm{mo}$. How much is the bill for a given month, after x number of gigabytes?

Linear Quadratic
4) A ball is dropped from the top of the Empire State Building, and it keeps dropping faster and faster. How fast is the ball moving after x seconds?

Linear Quadratic
5) A cannonball is fired from the deck of the S.S. Parabola, and arcs through the sky before hitting its target, 17 miles away.

Linear Quadratic
6) The area of a circle, as its radius increases.

Linear Quadratic
7) The circumference of a circle, as its radius increases.

What Kind of Model? (Tables)

Decide whether each representation is best described by a linear model, a quadratic model or neither! Show any work that you feel is useful. For Class Discussion:

\mathbf{x}	0	1	2	3	4	5	6	
\mathbf{y}	5	6	9	14	21	30	41	
2	\mathbf{x}	0	1	2	3	4	5	6
	\mathbf{y}	0	3	6	9	12	15	18

Linear
Quadratic
Neither

Linear
Quadratic
Neither

For Independent Practice:

3

\mathbf{x}	1	2	3	4	5	6	7
\mathbf{y}	1	3	5	7	9	11	13

Linear
Quadratic Neither

Linear
Quadratic
Neither

Linear
Quadratic
Neither

Linear Quadratic Neither

Linear
Quadratic
Neither

Parabolas

1) Sketch a parabola on each of the grids below that matches the description.

2) Label the vertex, root(s), and y-intercept of the parabola below with:
A) their coordinates
B) the vocabulary word (above) that describes each

3) Draw a dotted line representing the axis of symmetry and label it with the equation that defines it.

Graphing Quadratic Models

For this page, you'll need to have Exploring Quadratic Functions(Desmos) open on your computer.
The parabola you'll see is the graph of $f(x)=x^{2}$. Another, identical parabola is hiding behind it.
This second parabola is written in Vertex Form: $g(x)=a(x-h)^{2}+k$. Each coefficient starts at values to make $g(x)$ equivalent to $f(x)$.

1) Using the starting values of a, h, and k you see for $g(x)$ in Desmos, write the Vertex Form of $f(x)=x^{2}: f(x)=$ \qquad

Magnitude a

2) Try changing the value of a to $-4,0$, and 2 , graphing each parabola in the squares below. Be sure to identify and label the vertex and any roots with "V" and "R"!

3) What does a tell us about a parabola?

Horizontal Translation h

4) Set a back to 1 . Change the value of h to $-5,0$, and 5 , graphing each parabola in the squares below. Be sure to identify and label the vertex and any roots with "V" and "R"!

5) What does h tell us about a parabola?

Vertical Translation k

6) Set h back to 0 . Change the value of k to $-5,0$, and 5 , graphing each parabola in the squares below. Be sure to identify and label the vertex and any roots with " V " and "R"!

7) What does k tell us about a parabola? \qquad

Modeling Fuel Efficiency v. Speed

Open your copy of the Fuel Efficiency Starter File and click "Run".

num-sqr

Before we try to model our fuel-efficiency data, we need to learn a new Pyret function!

1) Can you predict what the output of the num-sqr expressions below will be?

Test them out in the Interactions Area, and record the results. num-sqr (4) \qquad num-sqr(6-2) \qquad
2) What is the Contract for num-sqr ? \qquad
3) What does num-sqr do?

Interpreting a Quadratic Model

In the Definitions Area of your Fuel Efficiency Starter File, you'll find the definition of a quadratic model quad1.
4) In quad1, the value of a is \qquad , the value of h is \qquad , and the value of k is \qquad
5) Fit this model to your dataset, using fit-model. What S-value did you get? \qquad
Hint: If you forgot the contract for fit-model, look it up in the contracts pages!
6) In your own words, describe what needs to change about this model to fit the data.

Modeling Fuel Efficiency

$$
\text { Vertex Form: } \quad y=a(x-h)^{2}+k
$$

- a : determines whether the parabola opens up or down and how steep the curve is
- κ : x-coordinate of the vertex
- k : y-coordinate of the vertex (in quadratic models, this is also the vertical shift!)

7) We've determined that peak fuel efficiency is around 45 mph . What variable in the equation should we replace with 45 ? \qquad
Update the definition of quad1, click "Run" and re-fit the model. What S-value did you get? \qquad
8) What y-coordinate of the vertex would best match the shape of the curve? \qquad
Update the definition of quad1, click "Run" and re-fit the model. What S-value did you get? \qquad
9) What value of a best matches the shape of the curve? \qquad
Update the definition of quad1 , click "Run" and re-fit the model. What S-value did you get? \qquad
10) Make any small changes you'd like, trying to get S as low as you can. Write your final definition below.
fun $f(x)$: \qquad end $S:$

What does this model actually mean?

After experimenting, I came up with a quadratic model for this dataset showing that \qquad is correlated to \qquad .The error in the model is described by an S-value of about \qquad which is \qquad considering that \qquad in this dataset range from \qquad to \qquad The vertex of the parabola drawn by this model is a ${ }_{\text {minima or maxima? }}$ at about $\int_{(x, y)}$ which means that

Before this point, as speed increases, mpg \qquad . After this point, as speed increases mpg \qquad

What Kind of Model? (Definitions)

Decide whether each representation describes a linear function, a quadratic function, or neither. If the function is quadratic, identify whether the form used is Vertex, Standard, or Factored.

		$=3 x^{2}+22$				$x-11)(x-$	
1)	Linear	Quadratic rtex, Standard,	Neither	2)	Linear	Quadratic ertex, Standard,	Neither
		$=100-4 y$				$=\frac{3}{5} x+7$	
3)	If Que	rtex, Standard,			If Qua	ertex, Standard,	
		$x): 12$ *			$m(p)$	(-5$)^{*}$)) end
5)	Linear	Quadratic	Neither	6)	Linear	Quadratic ertex, Standard,	Neither
		$=42^{2}-3 s$			fun	* num-sq	
7)	Linear	Quadratic	Neither	8)	Linear	Quadratic	Neither
	If Quadratic, is it Vertex, Standard, or Factored?				If Qua	rtex, Standard,	

Matching Factored Form to Graphs

Factored Form: $y=a\left(x-r_{1}\right)\left(x-r_{2}\right)$

- a : determines whether the parabola opens up or down and how steep the curve is
- r_{1} and r_{2} : roots, x -intercepts

Match each definition below to the graph it describes.
$y=2(x-1)(x+5)$
$y=(x+3)(x+4)$
$y=-3(x-1)(x-5)$
$y=\frac{1}{2}(x+3)(x-4)$
4
$y=-(x-5)(x+3)$
5

A

B

C

D

E

Matching Vertex Form to Graphs

Vertex Form: $y=a(x-h)^{2}+k$

- a : determines whether the parabola opens up or down and how steep the curve is
- n : x-coordinate of the vertex
- k : y-coordinate of the vertex

Match each definition below to the graph it describes.
$f(x)=-0.5(x-3)^{2}+2$
1

2

3

4

E
$\left.k(x)=\frac{1}{4}(x-4)^{2}+1\right)$
5

D
A

B

C

Exploring the Covid Dataset

For this page, you'll need to have the Covid Spread Starter File open on your computer. If you haven't already, select Save a Copy from the "File" menu to make a copy of the file that's just for you.

1) Take a look at the Definitions Area and find the "Notes on Columns". What is the start date for the data in this table? \qquad
2) Click "Run", and evaluate covid-table in the Interactions Area. What do you notice? \qquad
3) Evaluate MA1 in the Interactions Area. What does it return? \qquad
4) Evaluate CT1. What information do you learn? \qquad
5) Evaluate NH1. Why is it "unbound" and how could we make it work? \qquad
6) Define three new Rows called NH1, RI1 and VT1, for New Hampshire, Rhode Island and Vermont. Click "Run" and test them out.
a. How many people in Vermont tested positive on June 10st, 2020? \qquad
b. How many people in New Hampshire tested positive on June 10st, 2020? \qquad
c. How many people in Rhode Island tested positive on June 10st, 2020? \qquad
7) In Pyret, make a scatter plot showing the relationship between day and positive, using state as your labels, then sketch the resulting scatter plot below.

8) In which state did the number of cases grow fastest?
9) In which state did the number of cases grow slowest?
10) Are these strong or weak relationship(s)?
\qquad
11) What do you Notice? \qquad
\qquad
\qquad
12) What do you Wonder? \qquad
\qquad
\qquad

Linear Models for MA-table

For this page, you'll need to have the Covid Spread Starter File open on your computer. If you haven't already, select Save a Copy from the "File" menu to make a copy of the file that's just for you.

This starter file defines a table just for MA data, called MA-table: MA-table = filter(covid-table, is-MA)

1) Make a scatter plot from MA-table showing the relationship between day and positive, using state as the labels. Sketch the plot on the right.

As we've seen, it's easy to fit a linear model to any dataset in Pyret, so let's start by testing how well a linear function could model this data.
2) Use lr-plot to obtain the best-possible linear model for the MA Covid dataset, and write it below:
$f(x)=$ \qquad $S=$ \qquad
Note: Pyret uses e for scientific notation. For example: $2.46 e 3=2.46 \times 10^{3}=2460$
3) The optimized linear model for this dataset predicts an \qquad of about \qquad per \qquad .

The error in the model is described by an S-value of about \qquad , which is a \qquad fit considering that
\qquad in this dataset range from \qquad to \qquad .
4) Change the definition of the linear function in the Covid Spread Starter File to match the model produced by lr - $p l o t$ and "Save".
5) Do you think a linear function is a good model for this dataset? Why or why not? \qquad
\qquad
\qquad
\qquad

What do you think the code that defines MA-table is actually doing? \qquad
\qquad

Quadratic Models for MA-table

Fitting the Model Visually $f(x)=a(x-h)^{2}+k$

For this section, you'll need to have Slide 1: Quadratic Model for MA of Modeling Covid Spread (Desmos) open on your computer.

1) Try changing the values of a, h and k to find three promising quadratic models, graphing each one and labeling your values in the grids below.

2) Do your quadratic models open up or down?

Up \qquad .What does that tell us about a ? It's positive.
3) Describe one of your models: Where is the vertex? (\qquad) What is the horizontal shift? \qquad The vertical shift? \qquad
4) Which quadratic form would be the easiest to fit to this data? standard $\square \quad$ factored $\square \quad$ vertex \square

Fitting the Model Programmatically $f(x)=a(x-h)^{2}+k$
For this section, open your copy of the Covid Spread Starter File.
5) In the space below, define quadratic1 to be the first model you fit in Desmos.
fun quadratic1(x): (\qquad * (num-sqr(x - \qquad)) $)+$ \qquad end
6) Return to Covid Spread Starter File and update the definitions for quad ratic1, quad rat ic2, and quad rat ic3.

Then click "Run" to load your updated definition.
7) Use fit-model to determine the S-value of each model using the MA-table.

Hint: If you forgot the contract for fit-model, look it up in the contracts pages!
S for quadratic1: \qquad S for quadratic2: \qquad S for quadratic3: \qquad

What does this model actually mean?

After experimenting, the best quadratic model I came up with for this dataset shows that \qquad are correlated to \qquad
The vertex of the parabola drawn by this model is a \qquad at about \qquad , which predicts that \qquad

The error in the model is described by an S-value of about \qquad S \qquad , which is a bad, ok, good fit considering that \qquad in this dataset range from \qquad to \qquad -

Are Quadratic Models a Good Fit for This Data?

8) Would you feel good about making predictions based on these models? Why or why not? \qquad
\qquad
\qquad
\qquad

What Kind of Model? (Tables)

Decide whether each table is best described by a linear, quadratic, or exponential model.
If the model is exponential: What is the growth factor? Doubling (factor of 2)? Tripling (factor of 3)? Factor of 5? 10?

\mathbf{x}	\mathbf{y}
70	-169
71	-126
72	-81
73	-34
74	15
75	66
76	119

3) Linear Quadratic Exponential \quad factor

\mathbf{x}	\mathbf{y}
-3	36
-2	16
-1	4
0	0
1	4
2	16
3	36

4) Linear Quadratic Exponential \qquad

x0			y3		$\mathbf{x}$$-5$			$\begin{aligned} & y \\ & 466656 \end{aligned}$		
1			6			-4			7776	
2			12		-3			1296		
3			24		-2			216		
4			48		-1			36		
5			96		0			6		
6			192		1			1		
5)	Linear	Quadratic		Exponential	\star	Linear	Quadratic		Exponential	

What Kind of Model? (Graphs \& Plots)

Are these scatter plots best be described by linear, quadratic, or exponential models? If it's exponential, draw the asymptote!

1) Linear
Quadratic
Exponential
How did you know? \qquad

2) Linear
Quadratic
Exponential
How did you know? \qquad How did you know? \qquad

Graphing Exponential Models: $f(x)=\boldsymbol{a b} \times \mathbf{k}$

For this page, you'll need to have Slide 2: Exploring Exponential Models of Modeling Covid Spread (Desmos) open on your computer.
The curve you'll see is the graph of $h(x)=2^{x}$. Another curve $f(x)$ is hiding behind it.
For starters, the values of the coefficients of $f(x)$ have been set to make it equivalent to $h(x)$ so $k=0, b=2$ and $a=1$

Base b

1) Make sure $k=0$ and $a=1$. Experiment with b. For what values of b is the function undefined, with the line disappearing?
2) Keeping $a=1$ and $k=0$, change b to $0.5,1$, and 2, graphing each curve below. For each curve, label the coordinates at $\mathbf{x}=1,2$, and 3 .

3) What does b tell us about an exponential function, when $b>1$? \qquad
4) What does b tell us about an exponential function, when $0<b<1$?

Vertical Shift...and Horizontal Asymptote k

5) Keeping $a=1$ and $b=2$, try changing the value of k to $-10,0$, and 10 , graphing each curve in the squares below. For each curve, find and label the y-value where the curve is "most horizontal", then draw a horizontal line at that y-value.

6) What does k tell us about an exponential function? \qquad

Initial Value a

7) Set $k=0$ and $b=2$. Change the value of a to 10,2 , and -5 , graphing each curve in the squares below.

For each curve, label the y-intercept ($x=0$).

8) What does a tell us about an exponential function?

What Kind of Model? (Descriptions)

Decide whether each situation is best described by a linear, quadratic, or exponential function.
If the function is exponential: What is the growth factor. Is it doubling (factor of 2)? Tripling (factor of 3)? Factor of 5? 10?

Car Values

A particular kind of car sells for $\$ 32,000$, and its resale value drops by 12.5% each year.

1) Is the function increasing or decreasing? \qquad
2) When the car is brand-new ($x=0$), how much is it worth? \qquad
3) How much is it worth after...

(1 year) $x=1$	(2 years) $x=2$	$x=3$	

4) What is the form of this function? linear $\square \quad$ quadratic $\square \quad$ exponential \square

5) If it's exponential,

Complete the function by filling in the coefficients:
$f(x)=$ \qquad x + horizontal asymptote k

Is it exponential
growth? $\square \quad$ or
decay? \square

Lemonade Stand

Sally is selling lemonade, for $\$ 1.25$ a glass in hopes of finally be able to get the power drill she's been wanting. She starts with $\$ 20$ cash.
6) Is the function increasing or decreasing? \qquad
7) When Sally starts the day $(x=0)$, how many dollars does she have? \qquad
8) How many dollars will she have after...

$$
f(x)=\sum_{\text {initial value } a}^{\text {growth factor } b} \times \quad+\quad \text { horizontal asymptote } k
$$

Is it exponential growth? $\square \quad$ or \quad decay? \square

What Kind of Model? (Definitions)

Decide whether each representation describes a linear, quadratic, or exponential function. If the function is exponential: Identify the growth factor and the initial value.

$$
f(x)=6 x^{2}-5
$$

1) Linear Quadratic Exponential

How did you know? \qquad
\qquad

$$
\operatorname{cost}(w)=5\left(1.2^{w}\right)+16
$$

3) Linear Quadratic Exponential
How did you know?
If it's exponential, what's the $\frac{\text { growth factor }}{\text { initialvalue }}$?

$$
\operatorname{price}(d)=d^{2}+6 d
$$

5) Linear Quadratic Exponential

How did you know? \qquad
If it's exponential, what's the $\frac{}{\text { growth factor }}$ initial value $^{?}$

$$
f(a)=20000-4.1^{a}
$$

7) Linear Quadratic Exponential

How did you know? \qquad

If it's exponential, what's the
growthfactor initialvalue $?$

$$
\operatorname{miles}(\text { hours })=\frac{22 \times \text { hours }+14}{12-9}
$$

2) Linear
Quadratic
Exponential

How did you know? \qquad

If it's exponential, what's the $\overline{\text { growth factor }} \frac{\text { initial value }}{}$?

$$
t(g)=42-2 g^{2}
$$

4) Linear
Quadratic
Exponential

How did you know? \qquad

If it's exponential, what's the
$\overline{\text { growth factor }} \overline{\text { initial value }}$?

$$
j(x)=\frac{1}{2}^{x}+22
$$

6) Linear
Quadratic
Exponential

How did you know? \qquad

If it's exponential, what's the $\frac{}{\text { growth factor }} \overline{\text { initialvalue }}^{\text {? }}$

$$
g(x)=8\left(3^{-4 x}\right)
$$

8) Linear Quadratic Exponential

How did you know? \qquad

If it's exponential, what's the
growthfactor initial value $?$

Exponential Models: $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a b} \times \boldsymbol{k}$

Fitting the Model Visually - MA

For this section, you'll need to have Slide 3: Exponential Model for MA of Modeling Covid Spread (Desmos) open on your computer.

1) Try changing the value of k, then a, then b to find three promising exponential models, graphing each one and labeling your values on the grids below.

Fitting the Model Programmatically - MA

For this section, open your copy of the Covid Spread Starter File.
2) In the space below, define exponential for one of the models you fit in Desmos.
fun exponential(x): (\qquad * num-expt (\qquad , (~1*x))) + \qquad end
Two Notes on this function definition:

- num-expt is the function that we use for exponents. It takes in 2 numbers: the base and the power, in this case band x.
- ($\sim 1 * x$) at first it may appear that x is being multiplied by negative 1 , but it is actually being multiplied by ~ 1 (literally the value "roughly 1 "). This tells Pyret to round off the calculation, prioritizing speed over precision to get a result that is "roughly accurate". We've added this to the function definition so that you won't have to wait for several minutes for Pyret to run fit-model to get an answer for question 4.

3) Update the definition for exponential in the Definitions Area and click "Run" to reload it.

Then use fit-model to determine how closely exponential fits the MA-table and fill in the blanks below to interpret the model. Hint: If you forgot the contract for fit-model, look it up in the contracts pages!

According to this exponential model, on June 9, 2020 there were about \qquad $+$ \qquad in MA, for a total of about \qquad .This number grew exponentially, increasing by a factor of \qquad \% every day.

The error in the model is described by an S-value of about \qquad , which is a(n) \qquad model considering that \qquad in this dataset range from \qquad to \qquad
4) Are exponential models a good fit for this data? Why or why not? \qquad
5) Guesstimate" how many positive cases your model will predict after X days, then use your model in Desmos or Pyret to find the answer.

	Prediction	Result		Prediction	Result		Prediction	Result
50 days			150 days			250 days		
350 days			450 days	-		550 days		

\star Rewrite the model to make Pyret do these calculations with extreme precision. (Remove the part where it multiplies by ~1.)
WARNING: Be sure to save your work first, as there's a good chance this will lock up your browser and require force-quitting!
What changed?
Data scientists perform calculations to do things like send satellites to far-away planets, or analyze large populations of a billion or more. You know that the pros of using ~ 1 involve speed. What are the potential downsides of using ~ 1 to speed up a calculation?

Modeling Other States

For this page, you'll need to have the Covid Spread Starter File open on your computer. If you haven't already, select Save a Copy from the "File" menu to make a copy of the file that's just for you.

1) Find the function called is-MA in the Definitions Area under "Define some helper functions" and read the comments carefully!
a. What is the Domain of is-MA ? \qquad What is its Range? \qquad
b. What do you think is-MA(MA1) will evalute to? \qquad . is-MA(CT1) ? \qquad . is-MA(ME1) ? \qquad

Try typing each of the is-MA expressions into the Interactions Area on the right and confirm you were correct.
2) Find MA-table in the Definitions Area under "Define some grouped and/or random samples". What is that code doing? \qquad
3) Define a new function is-VT and create a new grouped sample called VT-table .

Hint: You can use the code for is-MA and MA-table as a model.

Modeling VT

For this section, in addition to Pyret, you will need to have Slide 4: Exponential Model for VT of Modeling Covid Spread (Desmos) open on your computer.
4) Use lr-plot to obtain the best-possible linear model for the relationship between day and positive in the VT-table, then fill in the blanks below:

The optimized linear model for this dataset predicts an \qquad of about \qquad per \qquad
The error in the model is described by an S-value of about \qquad , which is insignificant, moderate, significant, extreme considering that \qquad in this dataset range from \qquad to \qquad .
5) Use Slide 4: Exponential Model for VT of Modeling Covid Spread (Desmos) to come up with the best exponential model you can for the Vermont dataset, and write it below:
6) Add a definition for exponent ial-VT to the Definitions area of Covid Spread Starter File using the model you just found.

- Click "Run" to load your definition.
- Then fit the model using VT-table

According to this exponential model, on June 9,2020 there were about \qquad $+$ \qquad
\qquad in VT, for a total
\qquad .This number grew exponentially, increasing by a factor of \qquad or $\overline{\text { Growth Rate: }(b-1) \times 100}$ \% every day. The error in the model is described by an S-value of about \qquad , which is
insignificant, moderate, significant, extreme
considering that \qquad in this dataset range from \qquad
7) Are exponential models a good fit for this data? Why or why not? \qquad

What Kind of Model? (Descriptions 2)

Decide whether each situation is best described by a linear, quadratic, or exponential function.
If the function is exponential: What is the growth factor. Is it doubling (factor of 2)? Tripling (factor of 3)? Factor of 5? 10?

High Fives

Two students started a club. At every meeting, students in attendance must high-five each of the other students. Club membership has been growing steadily by one student each meeting.

1) Is the function increasing or decreasing? \qquad
2) When the 2 students started the club ($x=0$), how many high-fives happened? \qquad
3) How many high-fives happen at the subsequent meetings...

(3 students) $x=1$	$\begin{gathered} \text { (4 students) } \\ \quad x=2 \end{gathered}$	$x=3$	$x=4$

4) What is the form of this function? linear \square quadratic \square exponential \square

5) If it's exponential,

Complete the function by filling in the coefficients:

horizontal asymptote k

Is it exponential growth? \square or decay? \square

Going Viral

A student posted their animation of a puppy doing a back flip into a pile of laundry and the meme went viral! Every person that sees the meme falls in love with it and shares it with 10 new friends.
6) Is the function increasing or decreasing? \qquad
7) When the student posts it ($x=0$), how many total times has it been shared? \qquad
8) How many times will it have been shared after...

(the next person shares) $x=1$	(their friends share) $x=2$	$\mathrm{x}=3$	$x=4$

9) What is the form of this function? linear $\square \quad$ quadratic \square exponential \square

10) If it's exponential,

Complete the function by filling in the coefficients:
$f(x)=$ \qquad x +

Is it exponential growth? $\square \quad$ or decay? \square

Campus Housing Data

A college is looking at enrollment and housing data for students who've decided what their major will be, vs. those who are undecided:

	\# On Campus	\# Off Campus	\% On Campus
Undecided	120	80	$120 / 200=60 \%$
Decided	80	100	$80 / 180=44 \%$

1) According to the table, how many Undecided Majors live off-campus? \qquad
2) According to the table, how many Decided Majors live on -campus? \qquad
3) Who is more likely to live on campus: Decided or Undecided Majors? \qquad
4) Do you think there is a relationship between deciding on a major and living on or off campus? If so, why?

Exploring the Countries Dataset

For this section, you'll need the Countries of the World Starter File open on your computer. If you haven't already, select Save a Copy from the "File" menu to make a copy of the file that's just for you. The columns in this dataset are described below:

- country - name of the country
- gdp - total Gross Domestic Product of the country. GDP is often used to measure the economic health of a country.
- population - number of people in the country

1) Make a scatter plot showing the relationship between pc-gdp and median-lifespan, and sketch its plot below.

- pc-gdp - the average GDP per-person, in thousands of \$US
- has-univ-healthcare - indicates if the country has universal healthcare
- median-lifespan - the median life expectancy of people in the country

2) What do you Notice? \qquad
3) What do you Wonder? \qquad
\qquad
\qquad
4) Are there any countries that stand out? Why or why not? \qquad
\qquad
5) Suppose a wealthy country is suffering heavy casualties in a war. Draw a star on the plot, showing where you might expect it to be.
6) Do you think you see a relationship? If so, describe it. Is it linear or nonlinear? Strong or weak?
\qquad
\qquad
\qquad

Fitting Models for the Countries Dataset

For this page you will be working with both the Countries of the World Starter File and the Desmos file Fitting Wealth-v-Health and Exploring Logarithmic Models.

Follow the directions below to find linear, quadratic and exponential models for the relationship between pc-gdp and median-lifespan. As you find each model:

- update the corresponding definition in the Countries of the World Starter File
- click "Run" to load your new definition
- use fit-model to calculate the S-value Hint: If you forgot the contract for fit-model (to calculate S), look it up in the contracts pages.

1) Find the optimized linear model for this data using lr-plot.
linear $(x)=$ \qquad $x+$ \qquad

will increase \qquad by \qquad .The error in the model is described by an S-value of about
 considering \qquad in this dataset range from
\qquad
2) Find the best quadratic model you can, using the second slide (Wealth-v-Health Quadratic) in the Desmos activity.

$$
\text { quadratic }(x)=\underbrace{}_{\text {quadratic coefficient(a) }}(x-\underbrace{}_{\text {vertex (h) }})^{2}+\underbrace{}_{\text {vertical shift }(\mathrm{k})}
$$ S-value

The vertex of the parabola drawn by my model is a \qquad at about \qquad .Before this point, as x increases, \qquad . After this point, as x increases

The error in the model is described by an S - value of about \qquad , which is insignificant/reasonable/significant/extreme considering \qquad in this dataset range from \qquad to \qquad e.
3) Find the best exponential model you can, using the third slide (Wealth-v-Health Exponential) in the Desmos activity. exponential $(x)=$ \qquad $($ growth factor (b) $\left.{ }^{x}\right)+$ \qquad
\qquad

According to this exponential model, a country with a \qquad of zero \qquad would have a
\qquad of $\quad \begin{aligned} & a \\ & \\ & \end{aligned}$ \qquad , for a total of about \qquad .This number grows exponentially,
increasing by a factor of Growth Factor:b $^{\text {or }} \frac{\text { Growth Rate: }(b-1) \times 100}{}$ \% with every \qquad increase in \qquad .

The error in the model is described by an S-value of about \qquad , which is \qquad considering \qquad in this dataset range from \qquad to \qquad .
4) Are any of these models a good fit for this data? Why or why not?

What Kind of Model? (Graphs \& Plots)

Decide whether each representation is best described by a quadratic, exponential, or logarithmic function. If you think it's exponential OR logarithmic, draw a diagonal line for $y=x$, and then sketch the reflection of the curve.

1) Quadratic

2) Quadratic
Exponential
Logarithmic

3) Quadratic

Exponential
Logarithmic

2) Quadratic Exponential Logarithmic

4) Quadratic Exponential Logarithmic

6) Quadratic Exponential Logarithmic

What Kind of Model? (Tables)

Decide whether each representation is best described by a quadratic, exponential, or logarithmic function.
If the function is exponential, find the base (also called the growth factor): How much does y increase ($2 x$? 10x?) for a single increase in x ? If the function is logarithmic, find the base: How much does x need to increase ($2 x$? 10x?) just to get a single increase in y ?

Evaluating Logarithmic Expressions

Expressions	Translation	Evaluates to:
$\log _{2}(8)$	"The power you raise 2 to get 8"	3
$\log _{2}(1)$	"The power you raise 2 to get 1"	0
$\log _{5}(25)$	"The power you raise ___ to get	
$\log _{5}(1)$	"The power you raise ___ to get	
$\log _{3}(81)$	"The power you raise ___ to get	
$\log _{3}(1)$	"The power you raise ___ to get	
$\log _{2}(16)$		
$\log _{2}(32)$		
$\log _{10}(1000)$		
"The power you raise 0.1 to get 0.01"		
"The power you raise 4 to get 64"		
"The power you raise 4 to get 1"		

Graphing Logarithmic Models: $f(x)=a \log _{b} x+c$

Use this page with Slide 4: Exploring Logarithmic Functions of Fitting Wealth-v-Health and Exploring Logarithmic Models (Desmos).

- The blue curve is the graph of $h(x)=1 \log _{2} x+0$. Its constants will remain set at $a=1, b=2$, and $c=0$.
- You can modify the red curve $g(x)$ (which is hiding behind h !) by changing its coefficients: a, b, and c.

Base b

Keep \boldsymbol{c} at 0 and \boldsymbol{a} at 1 . Change the value of \boldsymbol{b} as indicated on each grid below.

1) Sketch each graph and label the coordinates where $x=1, y=1, y=2$ and $y=3$.

2) How does the value of b impact the shape of a logarithmic function?
3) What connections can you draw between the value of b and exponents? \qquad

Vertical Shift c

Set \boldsymbol{a} to 1 and \boldsymbol{b} to 2. Change the value of \boldsymbol{c} as indicated on each grid below.
4) Sketch each graph and label the coordinate where $x=1$.

5) How does the value of c impact the shape of a logarithmic function? \qquad
6) Why does $y=c$ when $x=0$?

Logarithmic Coefficient a
Set \boldsymbol{c} to 0 and \boldsymbol{b} to 10 , then zoom out out so you can see as far as $x=1,000$.

- Change $h(x)$ to $h(x)=1 \log _{10}(x)+0$ so that the blue curve lands on top of the red curve.
- Now you're ready to change the value of a as indicated on each grid below.

7) In each graph, label the coordinates where $x=10$ and $x=100$ and $x=1000$.
$a=-2$

8) What is the value of x when $\log _{10}(x)=6$? \qquad What about when $2 \log _{10}(x)=6$? \qquad When $3 \log _{10}(x)=6$? \qquad
[^4]
What Kind of Model? (Descriptions)

Decide whether each situation describes a quadratic, exponential, or logarithmic function. HINT: draw a table and plug in some points!

1) Earthquakes release enormous amounts of energy, which we can compare to the energy released by blowing up pounds of dynamite. For example, richter $(12,000)=4.0$, meaning that the force of blowing up 12,000 pounds of dynamite produces a 4.0 on the Richter scale! richter $(400,000)=5.0$, richter $(1,2540,000)=6.0$, and $\operatorname{richter}(398,000,000)=7.0$.
Quadratic
Exponential
Logarithmic
2) A car accelerates at a constant rate of $5 \mathrm{mph} / \mathrm{s}$. After 1 second, distance $(1)=2.5 \mathrm{miles}$.
distance $(2)=10$, distance $(3)=22.5$, and distance $(4)=40$

Quadratic
Exponential
Logarithmic
3) Moore's law says that the number of transistors in a microprocessor will double roughly every 1.5 years. Starting with 16 transistors, how many years will it take to reach 4,294,967,296 transistors?

Quadratic
Exponential
Logarithmic
4) The population of a colony of bacteria can double every 20 minutes, as long as there is enough space and food. Starting with 1 bacteria, $f(20)=2, f(40)=4, f(60)=8, f(80)=16 \ldots$

> Quadratic Exponential Logarithmic
5) Sequan puts $\$ 100$ in a savings account, earning 4% interest. After a year, savings(1) $=\$ 104$.
savings $(2)=\$ 108.16, \operatorname{savings}(2)=\$ 112.49 \ldots$

Quadratic

Exponential
Logarithmic
6) If the width of a rectangle doubles, how much does the area change?

Changing the Scale

For this page, you'll need to have Slide 5: Wealth-v-Health (Logarithmic) of Fitting Wealth-v-Health and Exploring Logarithmic Models (Desmos) and Countries of the World Starter File open on your computer.

Fitting a Logarithmic Model $f(x)=a \log _{b} x+c$

Open the Data Table folder by clicking on the triangle (\boldsymbol{D})

- x_{1} is the per-capita income for each country in thousands of $\$ \mathrm{US}$, and y_{1} is the median lifespan.
- Next to y_{1} you'll see a dark circle with spots ($\because \cdot$) inside. If the circle is dark, that means that those points are visible on our graph. Click the circle to "turn off" those dots, then click it again to turn them back on.
- Move the graph by clicking and dragging the background.
- Notice that a magnifying glass (\oplus) appears to the bottom left of the table. (You may have to scroll down to see the bottom of the table!) Clicking on the magnifying glass resizes/rescales the graph to fit all the points in the table.

1) Write the numbers you see along the x-axis, from left to right: \qquad
Continue this pattern - what would the next three numbers be? \qquad
2) Circle the type of function that describes this pattern:

Linear
Quadratic
Exponential
3) Move the sliders for a and c to create the best-fitting logarithmic model you can find, and write it below.

Note: The Bootstrap Pyret function log always uses $b=10$.

4) Modify logarithmic (x) in Countries of the World Starter File to define this model, and fit it using fit-model.

The error in the model is described by an S-value of about__S_units , which is ${ }_{\text {insignificant/reasonable/significant/extreme }}$ considering \qquad in this dataset ranges from \qquad to \qquad

Scaling the x-Axis

- Click on the wrench button (\mathcal{E}) in the top-right corner of the Desmos graph to Open the "Graph Settings" window.
- Expand the "More Options" section by clicking the triangle ($\boldsymbol{\nabla}$).
- Change the x-axis scale from Linear to Logarithmic.
- Adjust the view by zooming and dragging the graph to get all of the points in view on the screen and filling most of it.

5) What is the shape of the point cloud now, after changing the scale?

Linear
Quadratic
Exponential
6) Write the numbers you see along the x-axis, from left to right:

Continue this pattern - what would the next three numbers be?
7) Circle the type of function that describes this pattern:

Linear
Quadratic
Exponential
8) Adjust the sliders for a and c to improve the model. Toggle back and forth between logarithmic and linear x-axis scales as you work. When you are satisfied with your model, record both forms of the definition below.
9) Modify the definition of logarithmic2 (x) in Pyret to match this model. Use the fit-model function to find its S-value: \qquad
10) Why do you think transforming the x-axis makes our data look linear?

Transforming the Data

For this page, you'll need to have Slide 6: Wealth-v-Health (Transformed) of Fitting Wealth-v-Health and Exploring Logarithmic Models (Desmos) open on your computer.

- Find the Wealth vs. Health folder, which is open at the top of the expression list
- This is the same table we've seen before, and the "points" circle (\because) shows us that these dots are "on" and visible.
- Underneath the Wealth vs. Health folder, you'll see a function $g(x)$ and a list y_{2} defined to be the same as y_{1}.
- Open the second folder, called Log (Wealth) vs. Health, by clicking on the triangle (\boldsymbol{D})

1) Compare the two tables. (Here is a side by side comparison of how they each begin.)
Wealth vs. Health Log(Wealth) vs. Health Compare the 2 tables. What do you notice? What do you wonder?

x_{1}	$\ddots y_{1}$	$g\left(x_{1}\right)$	$\because y_{2}$
1.99051	52.1	0.29896436	52.1
11.76559	78.6	1.0706137	78.6
15.19295	77.2	1.1816421	77.2
6.26897	60.6	0.79719619	60.6
24.95776	76.9	1.3972056	76.9
20.5888	77.5	1.313631	77.5

2) Read the comments in rows 3 to 6 of the Desmos file. Where do the x-values in the second table come from? \qquad
3) Why is the second column of both tables the same? \qquad

- Turn the points for the first table OFF, then turn the points for our new table ON.

Our log transformation is so drastic that it looks like all the black datapoints are smashed against the y-axis!

- Rescale the graph (\oplus^{+}) to see the cloud.

4) What is the shape of this point cloud? linear \square quadratic \square exponential \square
5) Why do you think transforming the x-values make our data look linear? \qquad
\qquad
6) Through trial and error, move the sliders for m and b to create the best-fitting linear model you can find, and write it below.

$$
f(x)=\underbrace{}_{\text {slope }(\mathrm{m})} x+\frac{}{y \text {-intercept } / \text { vertical shift (b) }}
$$

Let's compare the coefficients from your models.

Linear (From above)

Logarithmic (From Changing the Scale)
\log coefficient (a)
\qquad
7) How are they similar? \qquad

Logarithmic Models

Open your copy of the Countries of the World Starter File and click "Run".

Transforming: From Logarithmic Plots toLinear Ones

1) Find the definition of $g(r)$. What does this function do? \qquad
2) Find the Contract for build-column on the Contracts Page.

What is its Range? \qquad What is its Domain? \qquad
3) At the end of the program, you'll find this code:

```
countries-transformed = build-column(countries-table, "log(pc-gdp)", g)
```

What do you think it does? \qquad
4) Click "Run", and evaluate countries-transformed in the Interactions Area on the right to test it out!
a. What is different about this Table? Hint: Find the last column! \qquad
b. Where did the column on the right come from? \qquad
5) Use this new table to make an $l r-p l o t ~ c o m p a r i n g ~ l o g(p c-g d p)$ and median-lifespan , with country as the label. Record the regression line and S value below:

$$
y=\frac{\text { slope }}{} x+\underset{\text { verticalshift }}{ }
$$

Inverting: From Linear Models to Logarithmic Ones

6) Use the coefficients of the linear model you just made to complete the logarithmic one below:

$$
\operatorname{logarithmic3}(x)=\underbrace{}_{\log \text { coefficient }} \log _{10}(x)+\underbrace{}_{\text {vertical shift }}
$$

7) Let's interpret this model:

predicted to have a \qquad that is \qquad longer.
8) Rewrite your model as a Pyret definition: fun logarithmic3(x): \qquad end
9) Add the definition of logar ithmic3 to your starter file, and use it with fit-model to calculate the value of S : \qquad
10) Complete the table below, copying your S values from the previous models:

Linear	Quadratic	Exponential	Logarithmic

11) Comparing the two smallest S values. How much better is the logarithmic model? \qquad

Does Wealth impact lifespan equally if there's Universal Healthcare?

For this page, you'll need the Countries of the World Starter File open on your computer. If you haven't already, select Save a Copy from the "File" menu to make a copy of the file that's just for you.

1) Add fun no-universal(r): not(r["has-univ-healthcare"]) end at the bottom of the Definitions Area.

Read the function definition carefully. What do you think it does? \qquad
2) Click "Run" and evaluate no-universal(albania) in the Interactions Area. What does Pyret return? \qquad
3) What does that mean? \qquad
4) Add countries-wo-univ = filter(countries-transformed, no-universal) to the Definitions Area and click "Run".

What does evaluating countries-wo-univ in the Interactions Area produce? \qquad
5) Using the two definitions you just added as models:

- Define a new function called yes-universal, which returns the value in the has-univ-healthcare column.
- Define a new table called countries-w-univ, which shows all the countries with universal healthcare.
- Click "Run" to load these new definitions once you have them both typed into the Definitions Area.

6) Fill in the table below by:

- Building an $l r-p l o t$ for each of these tables with the transformed-column $\log (p c-g d p)$.
- Using what you learn from lr-plot to write logarithmic models for each table.
- Using fit-model to find S for each of your logarithmic models and their corresponding un-transformed countries-w-univ and countries-wo-univ tables.

	With Universal Healthcare	Without Universal Healthcare
Linear Model	$f(x)=\int_{\text {slope }} \mathrm{x}+\int_{y \text {-intercept }}$	$f(x)=\underbrace{}_{\text {slope }} \mathrm{x}+{ }_{\text {-intercept }}$
Logarithmic Model	$f(x)=\underbrace{}_{\log \text { coefficient }} \log _{10}(x)+\underbrace{}_{y \text {-intercept }}$	$f(x)=\underbrace{}_{\text {log coefficient }} \log _{10}(x)+\underbrace{}_{y \text {-intercept }}$
S	_years	_ years
What does each model predict the increase in median-lifespan to be for each 10x increase in pc-gdp ?		
predicted increase	_years	_ years

7) Was the relationship stronger for countries-w-univ or countries-wo-univ ? \qquad
8) For which table is $p c-g d p$ expected to have a bigger impact on median-lifespan ?
9) Does the strength of the relationship determine how large of an impact pc-gdp has on median-lifespan ? \qquad

Data Cycle

Data Cycle

Design Recipe

Directions:

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes... examples:

what the function does with those variable(s)
end

Directions:

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...

examples:

function name
end
Definition
Write the definition, giving variable names to all your input values...
fun \quad is
end

Design Recipe

Directions:

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes... examples:

what the function does with those variable(s)
end

Directions:

Contract and Purpose Statement

Every contract has three parts...

Write some examples, then circle and label what changes...

examples:

function name
end
Definition
Write the definition, giving variable names to all your input values...
fun \quad is
end what the function does with those variable(s)

The Animals Dataset

This is a printed version of the animals spreadsheet.

	name	species	sex	age	fixed	legs	pounds	weeks
0	Sasha	cat	female	1	false	4	6.5	3
1	Snuffles	rabbit	female	3	true	4	3.5	8
2	Mittens	cat	female	2	true	4	7.4	1
3	Sunflower	cat	female	5	true	4	8.1	6
4	Felix	cat	male	16	true	4	9.2	5
5	Sheba	cat	female	7	true	4	8.4	6
6	Billie	snail	hermaphrodite	0.5	false	0	0.1	3
7	Snowcone	cat	female	2	true	4	6.5	5
8	Wade	cat	male	1	false	4	3.2	1
9	Hercules	cat	male	3	false	4	13.4	2
10	Toggle	dog	female	3	true	4	48	1
11	Boo-boo	dog	male	11	true	4	123	24
12	Fritz	dog	male	4	true	4	92	3
13	Midnight	dog	female	5	false	4	112	4
14	Rex	dog	male	1	false	4	28.9	9
15	Gir	dog	male	8	false	4	88	5
16	Max	dog	male	3	false	4	52.8	8
17	Nori	dog	female	3	true	4	35.3	1
18	Mr. Peanutbutter	dog	male	10	false	4	161	6
19	Lucky	dog	male	3	true	3	45.4	9
20	Kujo	dog	male	8	false	4	172	30
21	Buddy	lizard	male	2	false	4	0.3	3
22	Gila	lizard	female	3	true	4	1.2	4
23	Bo	dog	male	8	true	4	76.1	10
24	Nibblet	rabbit	male	6	false	4	4.3	2
25	Snuggles	tarantula	female	2	false	8	0.1	1
26	Daisy	dog	female	5	true	4	68	8
27	Ada	dog	female	2	true	4	32	3
28	Miaulis	cat	male	7	false	4	8.8	4
29	Heathcliff	cat	male	1	true	4	2.1	2
30	Tinkles	cat	female	1	true	4	1.7	3
31	Maple	dog	female	3	true	4	51.6	4

Sentence Starters

Use these sentence starters to help describe patterns, make predictions, find comparisons, share discoveries, formulate hypotheses, and ask questions.

Patterns:

- I noticed a pattern when I looked at the data. The pattern is \qquad
- I see a pattern in the data collected so far. My graph shows \qquad

Predictions:

- Based on the patterns I see in the data collected so far, I predict that \qquad
- My prediction for \qquad is \qquad

Comparisons:

- When I compared \qquad and \qquad , I noticed that \qquad
- The similarities I see between \qquad and \qquad are \qquad
- The differences I see between \qquad and \qquad are \qquad

Surprises and Discoveries:

- I discovered that \qquad
- I was surprised by \qquad
- I noticed something unusual about \qquad
Hypotheses:
- A possible explanation for what the data showed is \qquad
- A factor that affected this data might have been \qquad
- I think this data was affected by \qquad

Questions:

- I wonder why \qquad
- I wonder how
- How are \qquad affected by \qquad
- How will \qquad change if \qquad

Contracts for Data Science

Contracts tell us how to use a function, by telling us three important things:

1. The Name

2. The Domain of the function - what kinds of inputs do we need to give the function, and how many?
3. The Range of the function - what kind of output will the function give us back?

For example: The contract triangle : : (Number, String, String) -> Image tells us that the name of the function is triangle, it needs three inputs (a Number and two Strings), and it produces an Image.

With these three pieces of information, we know that typing triangle(20, "solid", "green") will evaluate to an Image.

Name Domain	Range
\# above $:: \frac{\text { Image }}{\text { above }}{ }^{\prime} \frac{\text { Image }}{\text { below }}$)	-> Image
above(circle(10, "solid", "black"), square(50, "solid", "red"')	
\# bar-chart $:: \quad\left(\frac{\text { Table }}{\text { table-name }}\right.$ ' $\left.\frac{\text { String }}{\text { column }}\right)$	-> Image
bar-chart(animals-table, "species")	
\# bar-chart-summarized $\quad: \quad\left(\frac{\text { Table }}{\text { table-name }}\right.$ ' $\frac{\text { String }}{\text { labels }}$ ' $\left.\frac{\text { String }}{\text { values }}\right)$	-> Image
bar-chart-summarized(count(animals-table, "species"), "value","count")	
\# beside $\quad: \quad$ ($\frac{\text { Image }}{\text { left }}$ ' $\left.\frac{\text { Image }}{\text { right }}\right)$	-> Image
beside(circle(10, "solid", "black"), square(50, "solid", "red"))	
\# box-plot $\quad:: \quad\left(\frac{\text { Table }}{\text { table-name }}\right.$ ' $\left.\frac{\text { String }}{\text { column }}\right)$	-> Image
box-plot(animals-table, "weeks")	
\# build-column $:: \quad\left(\frac{\text { Table }}{\text { table-name }}, \frac{\text { String }}{\text { column }}, \frac{\text { (Row } \rightarrow \text { Value) }}{\text { builder-function }}\right)$	-> Table
build-column(animals-table, "kilos", kilograms)	
\# circle $:: \quad\left(\frac{\text { Number }}{\text { radius }}, \frac{\text { String, }}{\text { fill-style }}, \frac{\text { String }}{\text { color }}\right)$	-> Image
circle(50, "solid", "purple")	
\# count $:: \quad\left(\frac{\text { Table }}{\text { table-name }}{ }^{\prime} \frac{\text { String }}{\text { column }}\right)$	-> Number
count(animals-table, "species")	
\# filter :: $\left.\quad \frac{\text { Table }}{\text { table-name }}, \frac{(\text { Row }->\text { Boolean })}{\text { tester-function }}\right)$	-> Table
filter(animals-table, is-dog)	
\# first-n-rows $\quad: \quad\left(\frac{\text { Table }}{\text { table-name }}\right.$ ' $\left.\frac{\text { Number }}{\text { num-rows }}\right)$	-> Table
first-n-rows(animals-table, 15)	
\# fit-model :: (Table $, \frac{\text { String }}{\text { table-name }}, \frac{\text { String }}{\text { labels }}, \frac{\text { String }}{\text { ys }}, \frac{(\text { Num }->\text { Num) })}{\text { model-function }}$	-> Image
fit-model(animals-table, "name", "pounds", "weeks", f)	

Name	Domain		Range
\# histogram	$:: \quad\left(\frac{\text { Table }}{\text { table-name }}, \frac{\text { String }}{\text { labels }}, \frac{\text { String }}{\text { values }}, \frac{\text { Number }}{\text { bin-size }}\right)$	->	Image
histogram(animals-table, "species", "weeks", 2)			
\# image-bar-chart	$:: \quad\left(\frac{\text { Table }}{\text { table-name }}, \frac{\text { String }}{\text { values }}, \frac{(\text { Row }->\text { Image })}{\text { draw-function }}\right)$	->	Image
image-bar-chart(animals-table, "species", f)			
\# image-histogram	$:: \quad \frac{\left(\frac{\text { Table }}{\text { table-name }}, \frac{\text { String }}{\text { values }}, \frac{\text { Number }}{\text { bin-size }}, \frac{(\text { Row } \rightarrow \text { Image })}{\text { draw-function }}\right)}{}$	->	Image
image-histogram(animals-table, "pounds", 2, f)			
\# image-pie-chart	$\left.:: \quad \frac{(\text { Table }}{\text { table-name }}, \frac{\text { String }}{\text { values }}, \frac{(\text { Row }->\text { Image })}{\text { draw-function }}\right)$	->	Image
image-pie-chart(animals-table, "sex", f)			
\# image-scatter-plot	$:: \quad\left(\frac{\text { Table }}{\text { table-name }}, \frac{\text { String }}{x s}, \frac{\text { String }}{y s}, \frac{(\text { Row } \rightarrow \text { Image })}{\text { draw-function }}\right)$	->	Image
image-scatter-plot(animals-table, "pounds", "weeks", f)			
\# line-graph	$:: \quad \frac{\left(\frac{\text { Table }}{\text { table-name }}, \frac{\text { String }}{\text { labels }}, \frac{\text { String }}{\mathrm{xs}}, \frac{\text { String }}{\mathrm{ys}}\right)}{\text { Ss }}$	->	Image
line-graph(animals-table, "name", "pounds", "weeks")			
\# log	$:: \quad \frac{\text { Number }}{}$)	->	Number
$\log (4)$			
\# log-base	$:: \quad\left(\begin{array}{l}\text { Number } \\ \text { base }\end{array}, \frac{\text { Number }}{n}\right)$	->	Number
log-base(2, 4)			
\# lr-plot	$:: \quad\left(\frac{\text { Table }}{\text { table-name }}, \frac{\text { String }}{\text { labels }}, \frac{\text { String }}{\mathrm{xs}}, \frac{\text { String }}{\mathrm{ys}}\right)$	->	Image
lr-plot(animals-table, "name", "pounds", "weeks")			
\# mean	$:: \quad\left(\frac{\text { Table }}{\text { table-name }}, \frac{\text { String }}{\text { column }}\right)$	->	Number
mean(animals-table, "pounds")			
\# median	$:: \quad\left(\frac{\text { Table }}{\text { table-name }}, \frac{\text { String }}{\text { column }}\right)$	->	Number
median(animals-table, "pounds")			
\# modes	$:: \quad\left(\frac{\text { Table }}{\text { table-name }}\right.$, $\left.\frac{\text { String }}{\text { column }}\right)$	->	List
modes(animals-table, "pounds")			
\# modified-box-plot	$:: \quad\left(\frac{\text { Table }}{\text { table-name }}, \frac{\text { String }}{\text { column }}\right)$	->	Image
modified-box-plot(animals-table, "pounds")			
\# multi-bar-chart	$:: \quad\left(\frac{\text { Table }}{\text { table-name }}, \frac{\text { String }}{\text { group }}, \frac{\text { String }}{\text { subgroup }}\right)$	->	Image
multi-bar-chart(animals-table, "species", "sex")			
\# overlay	$:: \quad\left(\frac{\text { Image }}{\text { top }}{ }^{\prime} \frac{\text { Image }}{\text { bottom }}\right)$	->	Image
overlay(circle(10, "solid", "black"), square(50, "solid", "red"'))			

Name Domain	Range
\# stacked-bar-chart $:: \frac{\text { Table }}{\text { table-name }}{ }^{\prime} \frac{\text { String }}{\text { group }}$ ' $\left.\frac{\text { String }}{\text { subgroup }}\right)$	-> Image
stacked-bar-chart(animals-table, "species", "sex")	
\# star $:: \quad\left(\begin{array}{l}\text { Number } \\ \text { radius }\end{array} \frac{\text { String }}{\text { fill-style }}, \frac{\text { String }}{\text { color }}\right)$	-> Image
star(50, "solid", "red")	
\# stdev $:: \quad\left(\frac{\text { Table }}{\text { table-name }}{ }^{\prime} \frac{\text { String }}{\text { column }}\right)$	-> Number
stdev(animals-table, "pounds")	
\# string-contains $:: \quad\left(\frac{\text { String }}{\text { haystack }}, \frac{\text { String }}{\text { needle }}\right)$	-> Boolean
string-contains("hotdog", "dog")	
\# sum $:: \quad\left(\frac{\text { Table }}{\text { table-name }}, \frac{\text { String }}{\text { column }}\right)$	-> Number
sum(animals-table, "pounds")	
\# text $:: \quad\left(\frac{\text { String }}{\text { message }}, \frac{\text { Number }}{\text { size }}, \frac{\text { String }}{\text { color }}\right)$	-> Image
text("Zari", 85, "orange")	

\qquad
\qquad

\qquad | | $:$ | $->$ |
| :--- | :--- | :--- |

\qquad | $:$ | $->$ |
| :--- | :--- |

\qquad $:: \quad->$
\qquad

These materials were developed partly through support of the National Science Foundation (awards 1042210, 1535276, 1648684, and 1738598) and are licensed under a Creative Commons 4.0 Unported License. Based on a work at www.BootstrapWorld.org. Permissions beyond the scope of this license may be available by contacting contact@BootstrapWorld.org.

[^0]: * \star NOTE \star When writing examples, you can assume that we have predefined image-a and image-b.*

[^1]: * \star NOTE \star When writing examples, you can assume that we have predefined image-a and image-b.*

[^2]: A Contract worth remembering:
 \# right-triangle :: Number, Number, String, String -> Image
 \# Takes in 2 side lengths, a color, and a fill type and makes a right-triangle

[^3]: what the function does with those variable(s)
 end

[^4]: How are a and b related?

