
Simple Data Types

(Also available in Pyret)

Students begin to program, exploring how Numbers, Strings, Booleans and operations on those data

types work in a programming language. Booleans offer an excellent opportunity for students to

explore the meaning and real-world uses of inequalities.

Lesson Goals Students will be able to…​

Identify examples of the following data types: Numbers, Strings, and

Booleans

Write Numbers, Strings, and Booleans in the Interactions Area

Write expressions that produce values of those types

Student-facing

Lesson Goals

Let’s explore Numbers, Strings and Booleans and identify what makes

these data types unique.

Materials PDF of all Handouts and Page

Lesson Slides

Printable Lesson Plan (a PDF of this web page)

Preparation Make sure student computers can access WeScheme.

Key Points For

The Facilitator

Error messages are the computer trying to give us a clue that something is

wrong. Model reacting to error messages with interest to demonstrate to

students that the messages are a helpful tool.

Glossary
Boolean :: a type of data with two values: true and false

definitions area :: the left-most text box in the Editor where definitions for values and functions are

written

editor :: software in which code can be written and evaluated

interactions area :: the right-most text box in the Editor, where expressions are entered to be

evaluated

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/simple-data-types/index.shtml
javascript:downloadLessonPDFs(false)
https://docs.google.com/presentation/d/1dMfEnFl4tjyR2zg-I0FSYdFzBR5aRky5g5MaOpPVr_U/
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/simple-data-types-wescheme/index.pdf
https://www.wescheme.org/openEditor

syntax error :: errors where the computer cannot make sense of the code (e.g. - missing commas,

missing parentheses, unclosed strings)

Strings and Numbers

Overview
Working together using a Driver/Navigator group setup, students experiment with the Editor. They

explore Number and String data types, and how they behave in this programming language.

Launch
When programming in this class, you’ll be working together using the

Driver/Navigator model. Each group can only have one "Driver" - their hands

are on the keyboard, and their job is to manage the typing, clicking, shortcuts,

etc. If you’re not a Driver, you’re a "Navigator" - your job is to tell the Driver

where to go, what to type, etc. A good Driver types only what the Navigator tells them to, and a good

Navigator makes sure to give clear and precise instructions.

Have students open WeScheme.

20 minutes

The Driver/Navigator Model

This model of pair programming is extremely useful for teasing apart the

"thinking" step from the "typing" one. Students - especially those who

are new to text-based programming or typing itself - can struggle to put

their thoughts into the programming environment. This model allows

them to focus on communicating their ideas , but letting the Driver focus

on the coding. Likewise, the Driver has a chance to focus on syntax and

programming. Finally, the requirement that ideas are translated through

another person’s hands is an excellent scaffold for getting students

talking about their thinking and about code.

You can read more about the Driver/Navigator model here…​

https://www.wescheme.org/openEditor
https://en.wikipedia.org/wiki/Pair_programming

This screen is called the Editor, and it looks something like the

diagram you see here. There are a few buttons at the top, but

most of the screen is taken up by two large boxes: the

Definitions Area on the left and the Interactions Area on the

right.

The Definitions Area is where programmers define values and

functions that they want to keep, while the Interactions Area

allows them to experiment with those values and functions.

This is like putting a set of function definitions on the board, and having students use those functions

to compute answers on scrap paper.

We need to click "Run" to load the program when we first open a file and if we make a change in

the Definitions Area.

Clicking "Run" will also clear the Interactions Area. For now, we will only be writing programs in the

Interactions Area on the right.

Investigate
Math is a language, just like English, Spanish, or any other language. Languages have nouns (e.g. “ball”,

“tomato”, etc.) and verbs, which are actions we can perform on these nouns (e.g. - I can “throw a ball”).

Math and programming also have values, like the numbers 1, 2 and 3. And, instead of verbs, they have

functions, which are actions we can perform on values (e.g. - “I can square a number”).

Languages also have rules for syntax. In English, for example, words don’t have ! and ? in the middle.

In math and programming numbers don’t have & in them.

Languages also have rules for grammar. The cat sat. is a sentence, whereas The sat cat. is nonsense,

even though all the words are valid syntax. The order of the words matters!

Keeping the importance of syntax and grammar in mind is helpful when learning to program!.

Complete Strings and Numbers.

What did you Notice? What do you Wonder?

Check out the Synthesize section, below, for a list key take-aways from this activity.

Did you get any error messages? What did you learn from them?

Most of the error messages we’ve seen were drawing our attention to syntax errors: missing

commas, unclosed strings, etc.

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/simple-data-types-wescheme/pages/strings-n-numbers.html

Synthesize
Our programming language knows about many types of numbers, and they behave pretty much the

way they do in math. Discuss what students have learned:

Numbers and Strings evaluate to themselves.

Our Editor is pretty smart, and can automatically switch between showing a rational number as a

fraction or a decimal, just by clicking on it!

Anything in quotes is a String, even something like "42".

Strings must have quotation marks on both sides.

Booleans

Overview
This lesson introduces students to Booleans, a unique data type with only two values: "true" and

"false", and why they are useful in both the real world and the programming environment.

Launch

What’s the answer: is 3 greater than 10?

Boolean-producing expressions are yes-or-no questions and will always evaluate to either true
(“yes”) or false (“no”). The ability to separate inputs into two categories is unique and quite useful!

For example:

Some rollercoasters with loops require passengers

to be a minimum height to make sure that riders are

safely held in place by the one-size-fits all

harnesses. The gate keeper doesn’t care exactly

how tall you are, they just check whether you are as

tall as the mark on the pole. If you are tall enough,

you can ride, but they don’t let people on the ride

who are shorter than the mark because they can’t

keep them safe.

When you log into your email, the computer asks

for your password and checks whether it matches what’s on file. If the match is true it takes you

to your messages, but, if what you enter doesn’t match, you get an error message instead.

Brainstorm other scenarios where Booleans are useful in and out of the programming

environment.

Investigate
In pairs, complete Booleans.

20 minutes

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/simple-data-types-wescheme/pages/booleans.html

Students will make predictions about what a variety of Boolean expressions will return and testing

them in the editor. Debrief student answers as a class.

Synthesize
What sets Booleans apart from other data types?

