
Your Own Drawing Functions

This lesson removes earlier scaffolding from working with Reactors, having students brainstorm an

original animation of their own and implement it from start-to-finish. This requires them to plan out

what kind of data structure they will need, and how it will be drawn and updated.

Product

Outcomes

Students write the draw-state function for a reactor using a single number

Students write the draw-state function for a reactor using a state

containing two numbers

Materials Single-Number State Starter File

Two-Number State Starter File

Slides are not yet available for this lesson

Printable Lesson Plan (a PDF of this web page)

Prerequisites Simple Data Types

Contracts

Simple Inequalities

Piecewise Functions and Conditionals

Compound Inequalities: Solutions & Non-Solutions

Introduction to Data Structures

Structures, Reactors, and Animations

Key Events

Refactoring

https://code.pyret.org/editor#share=1p4oviyUQ-EGuo12Y3wHeAdG8xJjOKtkE
https://code.pyret.org/editor#share=1Az8Xd4ZcMwqezo8vAldQOrfQkRvi2H8N
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-your-own-drawing-functions/index.pdf
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/simple-data-types/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities1-simple/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/piecewise-functions-conditionals/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities2-compound/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-intro-to-data-structures/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-structures-reactors-animations/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-key-events/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-refactoring/index.shtml?pathway=false

Drawing with a Single Number

Overview
Students practice writing a simple function to draw the state of a Reactor, when that state consists of

only a single number.

Launch
The majority of reactive programs you’ll write in this course will use data structures consisting of

multiple pieces of data, whether that be Numbers, Strings, Images, or Booleans. However, it’s not

required to have a full data structure in order to use a reactor. In fact, we can create an animation

based on just a single number!

Open the Single-Number State Starter File file and take a look at the code. Before hitting

"Run", can you guess what this code will do?

30 minutes

include image
include reactors

next-state-tick :: Number -> Number
fun next-state-tick(n):
 n + 1
end

draw-state :: Number -> Image
fun draw-state(n):

 "fix me!"

end

r = reactor:
 init: 1,
 # to-draw: draw-state,
 on-tick: next-state-tick
end

r.interact()

https://code.pyret.org/editor#share=1p4oviyUQ-EGuo12Y3wHeAdG8xJjOKtkE

Notice how there is no data block in this file. Both the next-state-tick and the draw-state
function consume a single number, and the initial value given to the reactor is also a single number (in

this case, 1.)

Click "Run". What do you see?

According to the next-state-tick function, on every clock tick the state (a single number) will

increase by one, which is exactly what happens. Since we didn’t tell the reactor how to draw the state

(the to-draw part of the reactor is commented out), when the reactor runs we see the state of the

reactor (a single number) increasing, instead of an animation.

What do you think would happen if we had a reactor with a complete draw-state function,

but a next-state-tick function that never updated the state? (Consuming and producing

the same value.)

Reinforce the fact that, although the draw-state and next-state-tick functions work together within a

reactor to produce an animation, each function can work without the other. In this example, next-

state-tick will update the state even without a function to draw the state.

There are much more interesting things we can display using a number as the state of the reactor,

however!

Investigate

Change the draw-state function so that it consumes a Number and produces an image.

Then, uncomment the to-draw: draw-state line in the reactor to see an animation

when the program runs!

Encourage students to brainstorm and share ideas for the draw-state function before beginning. Some

possible options include:

Drawing a star of size n (so that it gets larger on each tick)

Display n as an image using the text function.

Have students share back the draw-state functions they wrote.

Drawing with Two Numbers

Overview
This activity turns up the cognitive load: students practice writing a function to draw the state of a

Reactor, when that state consists of a structure containing two numbers.

Launch
You’ve practiced writing a draw-state function using a single number as a state, now let’s look at

something a bit more familiar.

Open the Two-Number State Starter File and take a look at the code.

30 minutes

https://code.pyret.org/editor#share=1Az8Xd4ZcMwqezo8vAldQOrfQkRvi2H8N

This code includes a data structure (called AnimationState) containing two numbers as its fields, a
and b. As before, the draw-state function is incomplete, and commented out from the reactor.

Based on the next-state-tick function defined here, what do you think will happen

when you hit "Run"? Discuss with your partner, then try it out!

With only the next-state-tick function, we can see the state updating, increasing the first

number by 1 and decreasing the second number by 1 each tick.

include image
include reactors

data AnimationState:
 | state(
 a :: Number,
 b :: Number)
end

START = state(1, 100)

next-state-tick :: AnimationState -> AnimationState
fun next-state-tick(s):
 state(s.a + 1, s.b - 1)
end

draw-state :: AnimationState -> Image
fun draw-state(s):

 "fix me!"

end

r = reactor:
 init: START,
to-draw: draw-state,
 on-tick: next-state-tick
end

r.interact()

Investigate

How could you define a draw-state function to show something interesting when the

program runs? Branstorm with your partner, then change the existing, broken draw-state
function to consume an AnimationState and produce an image. Then, comment out the

to-draw: draw-state line in the reactor to see an animation when the program runs!

Some possible ideas for this activity:

Display two shapes of size a and b, which get larger and smaller, respectively, as the reactor runs.

Make a and b the coordinates of an image, moving down and to the right across a background as

the reactor runs.

Synthesize
Have students share back what they brainstormed before beginning, then share the completed draw-

state functions they wrote, and the animations they created!

