
Introduction to Data Structures

Students encounter Data Structures in the context of using coordinates to model 2D animation. They

explore constructors and fields, creating a "digital bakery" using structures to model cakes.

Product

Outcomes

Students identify real-world behaviors that require data structures

Students make use of a complex data structure: Cake

Students define variables bound to Cakes

Students will generalize their understanding of function constructors and

accessors

Students write code that extracts each field from those Cakes

Students will write functions that access fields of a CakeType

Materials PDF of all Handouts and Page

Package Delivery Starter File

Bakery Starter File

Slides are not yet available for this lesson

Printable Lesson Plan (a PDF of this web page)

Prerequisites Simple Data Types

Contracts

Simple Inequalities

Piecewise Functions and Conditionals

Compound Inequalities: Solutions & Non-Solutions

Supplemental

Materials

Additional Printable Pages for Scaffolding and Practice

Glossary

calling :: using a function by giving it inputs

constructor :: a function that creates instances of a data structure

contract :: a statement of the name, domain, and range of a function

data block :: code that lists the name, constructor(s), and field(s) of a data structure

data structure :: a 'container' data type, which has fields that can hold other data (e.g. - a 'coordinate'

javascript:downloadLessonPDFs(false)
https://code.pyret.org/editor#share=1RKJNrC2eRxO8apsA0UKbLZAMGD73Xk5D
https://code.pyret.org/editor#share=1lSittPaSqyeDXAmYmLX8epCIDU4FCFlH
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-intro-to-data-structures/index.pdf
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/simple-data-types/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities1-simple/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/piecewise-functions-conditionals/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities2-compound/index.shtml?pathway=false
javascript:downloadLessonPDFs(true)

is a data structure holding number fields x and y)

domain :: the type or set of inputs a function expects, i.e., the independent variable(s) that govern the

output of the function

dot accessor :: a way to extract the values of fields an instance

field :: a part of a data structure that has a name and holds a single value of a specified data type

instance :: a specific example of a data structure, with specific values for each field (e.g. - (4,5) is an

instance of an (x,y) coordinate

name :: how we refer to a function or value defined in a language (examples: +, *, star, circle)

purpose statement :: a concise, detailed description of what a function does with its inputs

range :: the type or set of outputs that a function produces, i.e., the dependent variable(s)

variable :: a name or symbol that stands for some value or expression, often a value or expression

that changes

Review

Launch
In the previous unit, you reviewed almost everything from Bootstrap:Algebra including data types,

Contracts, and the Design Recipe. In this unit you will go above and beyond all that, and learn an

entirely new construct that will be the basis for everything you’ll do in Bootstrap:Reactive.

Ask a few introductory review questions to test students’ understanding:

What are the three parts of a Contract?

What is the Pyret code to draw a solid, green triangle of size 22?

Why is it important to write at least 2 examples before defining a function?

Investigate
To make sure the material from the previous unit is fresh in your mind, tackle the following activity:

Turn to Word Problem: double-radius in your workbook. Write a function called

double-radius, which takes in a radius and a color. It produces an outlined circle of

whatever color was passed in, with radius twice as big as the input.

If walking through this example as a class, use a projector so kids can see the function being written on

the computer.

Remember how to use the design recipe to work through word problems?

Step 1: Contract and Purpose Statement

What is the Name of this function? How do you know?

How many inputs does it have in its Domain?

What kind of data is the Domain?

What is the Range of this function?

What does this function do? Write a Purpose Statement describing what the function does

in plain English.

Review the purpose of Contracts: once we know the Name, Domain, and Range of a function, it’s easy

to write examples using those data types.

15 minutes

double-radius :: Number, String -> Image
Makes an outlined circle that has twice the given radius.

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-intro-to-data-structures/pages/double-radius.html

Step 2: Examples

Using only the Contract and Purpose Statement, see if you can answer the following

questions:

Every example begins with the name of the function. Where could you find the name of

the function?

Every example has to include sample inputs. Where could you find out how many inputs

this function needs, and what type(s) they are?

Every example has to include an expression for what the function should do when given

an input. Where could you look to find out what this function does?

Write two examples on your paper, then circle and label what is changing between them.

When labeling, think about what the changing things represent.

Don’t forget to include the lines examples: and end! Your examples should look similar to:

Each one of these answers can be found in the Contract or Purpose Statement. Suggestion: Write

these steps on the board, and draw arrows between them to highlight the process. The goal here is to

get students into the habit of asking themselves these questions each time they write examples, and

then using their own work from the previous step to find the answers.

Step 3: Definition

Once you know what is changing between our two examples, you can define the function easily. The

things that were circled and labeled in the examples will be replaced with variables in the function

definition.

Underneath your examples, copy everything that doesn’t change, and replace the changing

things with the variable names you used. (Don’t forget to add the fun and end keywords, as

well as the single colon (:) after the function header!)

examples:
 double-radius(50, "pink") is circle(50 * 2, "outline", "pink")
 double-radius(918, "orange") is circle(918 * 2, "outline", "orange")
end

double-radius :: Number, String -> Image
Makes an outlined circle that's twice the radius.
fun double-radius(radius, color):
 circle(radius * 2, "outline", color)
end

For more practice, turn to Word Problem: double-width in your workbook and complete the

Design Recipe for the double-width function.

Check students understanding: Why do we use variables in place of specific values? Why is it

important to have descriptive variable names, as opposed to n or x? Remind students about nested

functions: A function whose range is a number can be used inside of a function requiring a number in

its domain, as in circle(2 * 25, "outline", "red").

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-intro-to-data-structures/pages/double-width.html

Introducing Structures

Open the Package Delivery Starter File file on your computer and press "Run". What

happens?

The drone tries to deliver a package directly to a house, but the box falls straight down, outside of the

delivery zone. We want the package to fall diagonally , and land right in front of the house. Let’s take a

look at the code to see why it falls into the road instead. There are a few new concepts in this file, but

first, let’s focus on what you already know.

Look at the function defined here called next-position.

What is this function’s Domain? Its Range?

What does next-position do with its inputs?

This function takes in two numbers, representing the x- and y-coordinate of the box, but it only

produces a new y-coordinate (after subtracting 5). If only the y-coordinate is changing, the box will

always fall straight down. To reach the house, it will have to fall diagonally.

How should the box’s x-coordinate change if it moves diagonally to the right (toward the

house)? How should its y-coordinate change?

Functions can return only one thing at a time, but we want to return a new x- and a y-coordinate in

order to make the box fall diagonally. Thankfully, we have a way to combine multiple things within one

container, called a Data Structure. For this project, we’ve created a structure for you to use called

DeliveryState, which contains two Numbers. These represent an x and a y-coordinate.

Look at line 5, where we’ve defined DeliveryState. We’ll go through the new syntax for

defining a data structure, because very soon you’ll be defining brand new structures of your

own!

On the first line, we’ve written a comment that describes the stucture. We’re calling it

DeliveryState, and it contains Numbers for the x- and y-coordinate.

30 minutes

The DeliveryState is two numbers: an x-coordinate and a y-coordinate
data DeliveryState:
 | delivery(
 x :: Number,
 y :: Number)
end

https://code.pyret.org/editor#share=1RKJNrC2eRxO8apsA0UKbLZAMGD73Xk5D

You’re already familiar with built-in data types like Number, String, Image and Boolean. On

the next line, the data keyword allows us to create brand new data types of our own! Here, we are

making a data type called DeliveryState. We choose this name, because it represents the

current state — or position — of the package being delivered. Pyret lets us write any name after

data, but it’s good habit to choose a meaningful name and capitalize it.

The next line begins with the | symbol, sometimes called a “bar” or “pipe”, followed by the name of

the constructor function for this structure: delivery. This is similar to what you’ve seen before:

to create an Image, we call the function that creates it: rectangle, triangle, square, etc. To

create a DeliveryState, we can use the delivery constructor function with its inputs (x and

y).

This data block tells us that we’re defining a new data type called DeliveryState, whose

constructor function delivery takes in two Numbers: x and y. Once we’ve listed each input and its

data type, we finish defining the structure with the end keyword, just like finishing an example block.

In the Interactions Area, practice making some DeliveryStates using the delivery()
constructor function. Try making a DeliveryState that represents the box’s position if it’s

on the road, another when it’s in the air, above the house, and one when it’s right in front of

the house — a successful delivery!

Students will soon be writing creating new data structures. Cover this new syntax carefully, paying

special attention to capitalization (the name of the structure is capitalized (DeliveryState),

whereas its constructor function (delivery) is lowercase), double colons (::) before data types, and

commas between inputs to the constructor function.

Now it’s up to us to get this box delivered sucessfully, and make sure it lands at the house.

Turn to Word Problem: next-position in your workbook, read the word problem, and fill in the

Contract and Purpose Statement for the function next-position.

Point out that we’re now using a new data type in a contract: next-position consumes two Numbers,

and produces a DeliveryState. Once we’ve defined a new data structure using the above data block,

we can use it just like other data types.

next-position :: Number, Number -> DeliveryState
Given 2 numbers, make a DeliveryState by
adding 5 to x and subtracting 5 from y

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-intro-to-data-structures/pages/next-position.html

Now for our two examples. Using, or calling next-position with two numbers is easy, but what

happens to those numbers? We can’t return both at the same time…​unless we use a data structure! To

do so we’ll need to use the constructor function to make a structure from the data we already have.

According to the definition for DeliveryState, what function makes a DeliveryState?

What is its contract?

delivery :: Number, Number -> DeliveryState

What two things are part of a DeliveryState? Do we have values for those things as part of

our first example?

We don’t want our DeliveryState to contain the same x and y values we gave the

next-position function. How will the values change? (Remember to show your work!)

Your first example should look something like:

Once your first example is complete, write one more example with different inputs for the

x and y coordinates.

Remind students to show every step of their work in the example step of the design recipe: if the x-

coordinate increases by 5 while the y-coordinate decreases by 5, they should show the addition and

subtraction within the DeliveryState data structure, instead of just returning the new numbers.

Now that you have two examples, it’s time to define the function. You know the drill: circle

and label everything that changes between your two examples, copy everything that stays

the same, and replace the changing things with the variables you chose.

When you finish, your function definition should look like:

Now, instead of just changing and returning one number (a y-coordinate), we can return both the x

and y-coordinates of the box within a Data Structure.

Open the Package Delivery code again and replace the original next-position function

with the one in your workbook to make the box land within the dlivery zone, in front of the

house! Don’t forget to change the given examples to match your new function definition.

examples:
 next-position(30, 250) is delivery(30 + 5, 250 - 5)
end

fun next-position(x, y):
 delivery(x + 5, y - 5)
end

https://code.pyret.org/editor#share=0B9rKDmABYlJVWUlZTHVVRDFOdk0

Synthesize
Until now, a function could only return atomic values: single Numbers, Strings, Images, or Booleans. In

Bootstrap:Reactive, our functions will still return one value, but that value can be a Data Structure, (or

just “structure” for short) containing any number of values. This way we can return both the x- and y-

coordinate of a package using a DeliveryState. Later on, we’ll create new structures to record

detail about characters in a game, like their health, position, amount of armor, or inventory.

In Bootstrap:Algebra, students’ games were made by keeping track of just a few numbers: the x-

positions of the danger and target, and y-position of the player. In Bootstrap:Reactive, students’ games

will be much more complex, and will require many more values to move characters, test conditions,

keep track of the score, etc. Data structures simplify code by organizing multiple values: You couldn’t

represent every part of a player (position, health, inventory, etc.) with one number or string, but you

can refer to all these things collectively with a data structure. This way, we can have one value (a data

structure) containing multiple other values that can be accessed individually.

Cakes

Overview
Students walk through the process of defining a data structure based on a word problem.

Launch
Suppose you own a famous bakery. You bake things like cookies, pastries, and tarts, but you’re

especially known for your world-famous cakes. What type of thing is a cake? Is it a number? String?

Image? Boolean? You couldn’t describe all of the important things about a cake with any one of those

data types. However, we could say that we care about a couple of details about each cake, each of

which can be described with the types we already know.

For each of the following aspects of a cake, think about what data type you might use to

represent it:

The flavor of the cake. That could be “Chocolate”, “Strawberry”, “Red Velvet”, or something

else.

The number of layers

Whether or not the cake is an ice cream cake.

What data type could we use to represent the entire cake?

Now that we know everything that is part of a cake, we can use a data structure to represent the cake

itself. Let’s take a look at how this works.

30 minutes

Investigate

Open your workbook to Data Structure: CakeType.

On this page, we will define a data structure for cakes, which we call CakeType (since this is now a

new data TYPE). At the top of this page we see a comment, stating what things are part of a

CakeType. Below that is a line that says data CakeType:, which begins the definition of a new

data structure, called CakeType. On the next line, we define the function that makes a CakeType (

cake), and how exactly to make a CakeType — the names of each thing in a CakeType, and their data

types. Each piece of information that makes up a cake (the flavor, etc) is called a field. A field has both a

descriptive name (like flavor) and a data type.

What name describes the first field in a CakeType? What data type can we use to represent

it?

Refer students back to their language table, to see what Types are available.

There is a little bit of new syntax involved in defining structures. On the first line on Data Structure:

CakeType, we write flavor :: String, which tells Pyret that the first element of any CakeType

will be its flavor, represented by a String. This line shows how to define one field in a data structure.

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-intro-to-data-structures/pages/caketype.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-intro-to-data-structures/pages/caketype.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-intro-to-data-structures/pages/caketype.html

What name describes the second field in a CakeType? What data type can we use to

represent it?

On the next line, write layers :: Number,, which tells Pyret that the second element of any

CakeType will be its number of layers, represented by a Number.

What data structure should we use to represent whether or not the CakeType is an ice cream

cake? Use this to define another field.

On your paper, you should have:

This is the code that defines the CakeType data structure. It tells the computer what a CakeType
is and what goes into it. It also defines its constructor function, called cake. To make a CakeType, you

must call the constructor function with three things: a flavor, which is a String, layers, a Number,

and is-iceCream, which is a Boolean. Remember that order matters! For now, these are the only

things that we’re going to keep track of in a CakeType, but you can imagine how you might extend it to

include other information.

Stress the importance of being able to define your own data types to students: no longer are they

bound by the single values of numbers, strings, or Booleans! Pyret allows you to define brand new

Data Structures, containing any combination of values.

Open the Bakery Starter File and look at lines 3–8. Do they match what you have on your

paper?

Now take a look farther down, at line 10: birthday-cake = cake("Vanilla", 4, false)

What is the name of this variable?

What is the flavor of birthday-cake?

How many layers does birthday-cake have?

Finally, is birthday-cake an ice cream cake, or not?

a CakeType is a flavor, number of layers, and whether or not it is an
ice cream cake.
data CakeType:
 | cake(
 flavor :: String,
 layers :: Number,
 is-iceCream :: Boolean)
end

https://code.pyret.org/editor#share=1lSittPaSqyeDXAmYmLX8epCIDU4FCFlH

Below the data definition for CakeType there are four CakeTypes defined:

birthday-cake

chocolate-cake

strawberry-cake

red-velvet-cake

Ask students questions about these CakeTypes to get them thinking about how they would define

their own.

On line 14, define another CakeType, which you can name however you like (but choose

something descriptive, like pb-cake, lemon-cake, etc.) To start,

How would you define this variable?

What function is used to make a Cake?

Which thing comes first in a Cake structure?

Now what do you expect to happen when you type the name of your new CakeType into the

Interactions Area? Click "Run" and try it out.

Have students walk you through the process of defining a new value and making a CakeType with

whatever flavor, etc. they like.

Define two new values for some of your favorite cakes. You can give them whatever names

you prefer. You can make any kind of CakeType that you want, as long as your structure has

the right types in the right orders!

pb-cake = cake("Peanut Butter", 2, true)

Repetition is key in this lesson. Have

students identify each part of the

CakeType for every one they’ve

defined. What is the flavor of their first

CakeType? Its number of layers?

Ensure that students are using their

inputs in the right order!

At this point, you’ve worked with two

different Data Structures: JumperStates

and CakeTypes, and you’ve created

different examples, or instances, of these

structures. Instances are concrete uses

of a data type, just as 3 is a concrete

Number (where Number is the type).

Here, CakeType is the type, and

cake("Chocolate", 8, false) is

a concrete cake with specific values for each field. In programming, we create instances much more

often than we create new data structures. For now, the important point is to recognize the difference

between a structure definition (the data…​. piece of code) and specific instances of a data structure

(like birthday-cake, or jumper(44, 75).

Common Misconceptions
Students often struggle with the difference between the definition of a data structure and instances

(items created from) that data structure. When students define CakeType, they haven’t created any

specific cakes. They have defined a type that they can use to define specific cakes. If they have a

specific cake, they can ask questions of it such as "is this a chocolate cake?"and produce an answer. If

all they have is the CakeType definition, they can’t answer such questions. Some people like the

analogy of a cookie cutter here – CakeType defines a cookie cutter, but doesn’t produce any cookies.

To get a cookie, you use the cake constructor to define a specific cake with specific values for the

fields.

Synthesize
Based on these instances of CakeTypes you just wrote:

What is the name of the function that creates a CakeType?

What is the Domain of this function?

How many things are in the domain?

The three things in the domain of cake are, in fact, the three things that we have already listed on Data

Structure: CakeType! With data structures, the order is very important: we always want the first

string in cake to be the CakeType’s flavor, the first number to be its number of layers, etc.

After clicking the "Run" button, in Pyret, type birthday-cake into the Interactions Area

and hit enter. What do you get back?

Let’s make sense of this output. What happens when you type just a number into the Interactions

Area? We get that same number back! What about Strings? Images? Booleans? If we don’t do anything

to our input, or use any function on it, we get back exactly what we put in! Here, you put in a

CakeType, let’s see what we get back. At first glance, it looks like a function call was the answer! But

there’s a few things different about what appears in the output. First, it isn’t the same color as a

normal function call, which is the first hint that something’s different. Second, we can click on it, and

see that this value is storing three other values in its fields — the flavor, layers, and whether or not it’s

ice cream. This compound value that’s printed is an instance of a CakeType. It’s a value in its own

right, so when we type in birthday-cake it shows us this value (just like with numbers and strings).

Remind students that values will always evaluate to themselves. 4 evaluates to 4, the string "pizza"

evaluates to "pizza", and birthday-cake evaluates to cake("Vanilla", 4, false)

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-intro-to-data-structures/pages/caketype.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-intro-to-data-structures/pages/caketype.html

Getting data from a structure

Overview
Students are introduced to the syntax of dot accessors, which allow them retrieve data from instances.

Launch
Suppose you want to get the flavor out of chocolate-cake. You don’t care about the message,

color, or anything else — you just want to know the flavor. Pyret has syntax for doing precisely that:

.flavor.

If you type chocolate-cake.flavor into the Interactions Area, what should it evaluate

to? Try it out!

What kind of thing did it return: A Number, String, Image, Boolean, or structure?

Practice taking the flavor out of every CakeType you have defined, using .flavor

Of course, there are ways to access any part of a CakeType, not just the flavor! What do you think

you would get if you typed chocolate-cake.layers in the Interactions Area?

Try using the dot-accessors .layers and .is-iceCream on your CakeTypes! Do they do

what you expect?

A way to prompt students to use these accessors is to ask: "How do you get the flavor out of a

CakeType?" or "How do you get the layers out of a CakeType?" Throughout the course you can set up a

call and response system with students, where the question "How do you get the X out of a Y?" will

prompt the name of the accessor.

The syntax for getting a field from a structure is known as a dot accessor. They allow you to specify

exactly what part of a structure you want. If we want to know if we can fit a certain CakeType through

a doorway, we probably care only whether the number of layers is less than a certain amount.

Likewise, if we want to know whether or not a character in our game has lost, we need to know only if

her health is less than 0: we might not care what her location is, or the color of her armor.

Programmers use accessors a lot, because they often need to know only one piece of information from

a complex data structure.

40 minutes

Our CakeType structure is defined using data CakeType: and the cake(…​) lines, which tell the

computer what things make up that structure, and what order and type each thing is. In return, we get

new functions to use. Until we write these lines, we don’t have cake(…​) (to make a Cake), .flavor
(to get the flavor out of the Cake), .layers, or any other dot-accessors, because Pyret doesn’t know

what a CakeType is —  we haven’t defined it .

To see this for yourself, type a pound sign (#) before the line which begins with cake(…​) and

each of the fields. This comments out the definition, so that the computer ignores it. Hit run,

and see what happens.

Investigate
Of course, when programmers work with data structures, they don’t just define them and create

instances. They also write functions that use and produce structures. Let’s get started writing some

functions for CakeTypes.

Turn to Word Problem: taller-than in your workbook. Write the contract and purpose

statement for a function called taller-than, which consumes two CakeTypes, and produces

true if the first CakeType is taller than the second.

What is the domain for this function?

What is the range of taller-than?

Which part(s) of the CakeTypes will you need to check to determine if one is taller than

the other?

For your first example, try comparing birthday-cake and chocolate-cake. Do we care about

what flavor either of these CakeTypes are? What about whether or not one of them is an ice cream

cake? All we need to figure out which one is taller is their number of layers.

How do you get the number of layers out of birthday-cake? What about

chocolate-cake? Write your first example to figure out if birthday-cake has a greater

number of layers than chocolate-cake.

taller-than :: CakeType, CakeType -> Boolean
consumes two CakeTypes and produces true if the number of
layers in the first is greater than the number of
layers in the second

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-intro-to-data-structures/pages/taller-than.html

Write one more example for the function taller-than, this time using it to compare any

two CakeTypes you defined earlier.

Next, circle and label what changes between the two examples. How many variables will

this function need? Then write the definition, using your examples to help you.

After replacing the changing things with variables, your definition should look similar to:

Turn to Word Problem: will-melt in your workbook. Your bakery needs to know if certain

CakeTypes needs to be refrigerated. If the temperature is greater than 32 degrees AND the

given CakeType is an ice cream cake, the function should return true.

Fill out the Contract and Purpose Statement for the function.

Write two examples for how one would use will-melt.

Circle and label what varies between those examples and label it with a variable name.

Define the function.

Give students plenty of time to practice using dot-accessors, extracting pieces of the Cake structures

and writing expressions that compute with them.

Synthesize
Optional: In the Bakery Starter File, extend the CakeType data structure to include one more field: a

message, represented as a String. (Make sure you remember to change each CakeType instance below

the data definition: if a CakeType now contains four fields, each instance will need to include all four

fields!) Next, write a function called make-birthday-cake, which takes in a string representing

someone’s name, and produces a 2-layer, chocolate CakeType with “Happy birthday [Name]!” as the

message.

Since this function returns a CakeType, remind students that they’ll need to use the cake constructor

function to produce a CakeType.

examples:
 taller-than(birthday-cake, chocolate-cake) is
 birthday-cake.layers > chocolate-cake.layers
end

fun taller-than(a-cake1, a-cake2):
 a-cake1.layers > a-cake2.layers
end

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-intro-to-data-structures/pages/will-melt.html
https://code.pyret.org/editor#share=1lSittPaSqyeDXAmYmLX8epCIDU4FCFlH

Closing
Data Structures are a powerful tool for representing complex data in a computer program. Simple

video games, like Pong, might need to keep track of only a few numbers at once, such as the position of

the ball, position of each paddle, and the score. But if a game has many different enemies, each with its

own position and health, or multiple levels with their own background images, the game can get very

complicated very fast, and structures are a great way to manage and make sense of all the data.

Programmers can do a LOT with data structures, and in the upcoming lessons you’ll start creating your

own structures to make a customized animation.

5 minutes

Additional Exercises
Students can practice their vocabulary on Vocabulary Practice

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-intro-to-data-structures/pages/vocabulary-practice.html

