
Adding Levels

Students parameterize other parts of their game, so that the experience changes as the score

increases. This track delves deeper into conditionals and abstraction, offering students a chance to

customize their games further while applying those concepts.

Product

Outcomes

Students add a second level (with a different background image) to

NinjaCat

test

Materials Slides are not yet available for this lesson

Printable Lesson Plan (a PDF of this web page)

Prerequisites Simple Data Types

Key Events

Contracts

Simple Inequalities

Compound Inequalities: Solutions & Non-Solutions

Piecewise Functions and Conditionals

Introduction to Data Structures

Structures, Reactors, and Animations

Build Your Own Animation

Glossary

helper function ::  a small function that handles a specific part of another computation, and gets

called from other functions

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-adding-levels/index.pdf
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/simple-data-types/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-key-events/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities1-simple/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/inequalities2-compound/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/piecewise-functions-conditionals/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-intro-to-data-structures/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-structures-reactors-animations/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-build-your-own-animation/index.shtml?pathway=false


Adding Levels

Overview
This activity introduces a programming pattern to add levels  to students' games. For now, the only

thing a level does is change the background - but students can easily extend this to change other

aspects of the game.

Launch
You can add depth to your game by adding levels . In this lesson, we’ll cover making new levels based on

the game’s score. To start, we want our Ninja Cat game to have a different background image when

the player progresses to the next level. We’ll say that the player reaches level two when his or her

score is greater than 250.

Where do you define the BACKGROUND-IMG image in your game? Keep your original

background for the first level, but define a new variable, BACKGROUND2-IMG, that will be

used for level 2. For the best results, use an image that is the same size as your original

background.

Once you have your second background image, it should be drawn into the game  — but only when a

certain condition is met. Think back to the helper function we wrote to change the color of the sunset

animation in Unit 4], and we need to do the same thing here!

What must be true for the player to progress to level 2?

Write a function draw-bg, which consumes the score and produces the appropriate

background image.

Now that we have our helper function, we can use it to draw of that one part of the animation. Instead

of blindly putting BACKGROUND-IMG into our function, now we’ll use draw-bg(g.score):

45 minutes

https://code.pyret.org/editor#share=0B9rKDmABYlJVVkpkTmEyd1ZTaE0
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/re-functions-that-ask-questions/index.shtml


Investigate
Now our Ninja Cat game has a level 2! You can add more conditions to draw-bg to have multiple

levels. You can use this same technique in lots of ways:

Write draw-player and change draw-state so that have the Player transform if the

score is above 250.

Change your animation functions so that your characters move faster if the score is above

250.

Add a special key (jumping? firing? warping?) that is only unlocked if the score is above

250.

fun draw-state(g):
put-image(text(
string-append("NinjaCat! Score: ", num-to-string(g.score)),
          20, "white"),
    310, 470,
    put-image(
    text("Use arrow keys to move. Jump on the dog & catch the ruby!",
          12, "white"),
      320, 450,
      put-image(PLAYER-IMG, g.playerx, g.playery,
        put-image(CLOUD-IMG, 150, 350,
          put-image(RUBY-IMG, g.targetx, g.targety,
            put-image(DOG-IMG, g.dangerx, g.dangery,
              draw-bg(g.score)))))))
...


