
The Distance Formula

(Also available in WeScheme)

Students apply their knowledge of the Pythagorean Theorem and Circles of Evaluation to develop a

function for the distance formula.

Lesson Goals Students will be able to:

Explain how the distance formula is related to the Pythagorean theorem.

Write a function for the distance formula.

Student-Facing

Lesson Goals

Let’s investigate how the Pythagorean theorem can help us find the

distance between two game characters.

Let’s write a function that takes in 2 points and returns the distance

between them.

Prerequisites Simple Data Types

Contracts

Functions: Contracts, Examples & Definitions

Solving Word Problems with the Design Recipe

Materials PDF of all Handouts and Page

Lesson Slides

Printable Lesson Plan (a PDF of this web page)

Supplemental

Materials

Additional Printable Pages for Scaffolding and Practice

Sample Game Starter File

Sample Game with Distance Lines Made Visible

Relevant

Resources

This short video introduces viewers to the nearly 4000 year old

Babylonian tablet known as Plimpton 322, which contains a table of

Pythagorean Triples that long predates Pythagoras, as well as to

Babylonians use of the base 60 system.

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/distance-formula-wescheme/index.shtml
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/simple-data-types/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/contracts/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/functions-examples-definitions/index.shtml?pathway=false
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/functions-dr/index.shtml?pathway=false
javascript:downloadLessonPDFs(false)
https://docs.google.com/presentation/d/17CtccsNkKuJsUvwCFnFbGP4BWf8KlkqK5cUqF2BTBpc/
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/distance-formula/index.pdf
javascript:downloadLessonPDFs(true)
https://code.pyret.org/editor#share=1uUEsPwha-Siw-sMNf7Zaz_Z4gAog7Prl
https://code.pyret.org/editor#share=1R8uAFAeYRy5L6FydesOBLHQHFtQEGxGV
https://www.youtube.com/watch?v=i9-ZPGp1AJE&feature=youtu.be

Key Points for

the Facilitator

Note: This lesson assumes that students already have a basic understanding of

the Pythagorean Theorem and how to use it. This lesson is designed to build on

what they know and deepen their understanding!

The distance formula is an excellent review of Circles of Evaluation. Have

students work out the expression in small groups to foster discussion.

Glossary

conditional :: a code expression made of questions and answers

coordinate :: a number describing an object’s location

hypotenuse :: the side opposite the 90-degree angle in a right triangle

Pythagorean Theorem :: the relationship between the squares of the sides of a right triangle; can be

used to find diagonal distances on the coordinate plane

Distance in 1 Dimension

Overview
Students discover the need for distance calculation (first in one dimension, then in two) in video

games.

Launch

Sign in to code.pyret.org (CPO) and open your saved Game Starter Files.

At this point:

The Target and Danger should be moving on their own.

The Player should respond to keypresses.

The Target and Danger should re-appear after they leave the

screen.

It’s almost fully-playable!

Here’s a link to a Sample Game Starter File you can use if you’re demoing

on the board.

What seems to be missing from this game?

The characters aren’t doing anything when they collide.

What does it mean for characters to 'hit' one another? To collide?

They have to be close enough to touch.

How will the computer know when the characters have collided?

When the coordinates of the characters are really close to each other.

In the following activity, students will role play a collision between two characters.

Draw a "number line" on the floor or across a wall of your classroom as the backdrop for your

movement, and select a volunteer to represent a character in the game (either TARGET or

DANGER), while represent the PLAYER . Emphasize that this represents one dimension

(perhaps the x-axis). Both of you should stand on the number line, 8-10 steps away from one

another.

15 minutes

https://code.pyret.org/
https://code.pyret.org/editor#share=1uUEsPwha-Siw-sMNf7Zaz_Z4gAog7Prl

Each image in the game is located based on its center. Make sure that you and your volunteer

stand with feet as close together as possible, representing the infinitely small point that

identifies your center. Have you and the volunteer raise your arms to form a "T shape",

representing the outer edges of the characters.

Ask the class how far apart you and your volunteer are. How they would calculate this if you

were standing on a number line and they could see the actual coordinates under your feet?

The goal is to illicit the response that students would subtract the smaller coordinate from

the larger one (or subtract in any order and take the absolute value).

Side-step towards each other one step at a time, each time asking the class, "We are colliding:

True or False?" Be sure to only accept "true" and "false" as responses - not "yes" and "no"!

After a few iterations, try switching places and repeating. Point out that students always

subtract the smaller number from the larger one, regardless of the character order! The results are

always positive.

Do this until students can clearly see that collision happens when the two characters are

touching or overlapping in some way - NOT when they are at the same point.

Investigate
Our game computes 1-dimensional distance (vertical or horizontal) using a function called

line-length . Let’s explore how it works!

Optional: If you want to provide students with the questions below, use Line Length Explore.

Find the line-length function in your game files and take a minute to look at the code.

What do you notice?

Both of the examples do the same thing, even though the numbers are given in a different

order.

It’s a piecewise function!

It uses inequalities.

What do you wonder?

Click "Run", and practice using line-length in the Interactions Area with different values

for a and b .

What does the line-length function do?

It always subtracts the smaller number from the larger number and evaluates to a positive

distance!

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/distance-formula/pages/line-length-explore.html

Why does it use conditionals?

To determine whether or not to subtract the numbers in the given order or to swap the order

to get a positive result.

Synthesize
Why is the distance between two points always positive?

Because distance has nothing to do with direction - it takes just as long to drive from Seattle to Wichita

as it does to drive from Wichita to Seattle.

Why line-length?

Students learn early on that distance in 1-dimension is computed via | 𝑥

− 𝑥 |, and that distance is always a positive value. The Pythagorean

Theorem teaches students that the length of the hypotenuse is

computed based on the distance in the x- and y-dimension.

Most math textbook, however, show the distance formula without

connecting back to that theorem.

√(𝑥 − 𝑥) + (𝑦 − 𝑦)

A student who asks whether it’s a problem when 𝑥 − 𝑥 is negative is

displaying a deep understanding of what’s going on!

Using the line-length function explicitly connects the distance

formula back to the 1-dimensional distance students know, allowing

them to apply prior knowledge and better connect back to the

Pythagorean Theorem itself.

This effectively rewrites the distance formula as:

√| 𝑥 − 𝑥 | + | 𝑦 − 𝑦 |

2

1

2 1 2 2 1 2

2 1

2 1 2 2 1 2

Distance in 2 Dimensions

Overview
Students extend their understanding of distance from one dimension to two.

Launch
We just practiced computing the distance in 1-dimension, which is useful if the Player and Danger

have the same x- or y-coordinate. But how do we compute the distance between two points when

both the x- and y-coordinates are different?

Here’s a link to a Sample Game with Distance Lines Made Visible to use if you’re demoing the instruction

below on the board.

Scroll down to 4. Collisions in your game file and look for the distances-color

definition. What is the value defined to be?

Right now this value is defined to be the empty string "" .

Change this to a color that will show up on your background, and click "Run". What

happens?

This setting draws lines from your Player to each of the other characters, and then uses those

lines as the hypotenuse of right triangles! The legs of these triangles show the distance in 1

dimension each (on the x- and y-axis).

In order to compute the diagonal distance between two characters in a video game, we’ll need a

special formula that considers both the vertical and the horizontal distances between them!

When we turned on distances-color in our game, we saw the diagonal distance between two

characters represented as the hypotenuse of a right triangle.

How do we find the hypotenuse of a right triangle if we know the measures of both of its

legs?

The Pythagorean Theorem! 𝑎 + 𝑏 = 𝑐

If we had one player at (0,0) and another player at (4,3), we’d see a right triangle and the

lengths of the legs would be 3 and 4. How would we use the Pythagorean Theorem to find

the hypotenuse of the triangle?

We would add 3 and 4 , or 9 and 16, to get 25. The square root of 25, or 5, is the length of

the hypotenuse.

30 minutes

2 2 2

2 2

https://code.pyret.org/editor#share=1R8uAFAeYRy5L6FydesOBLHQHFtQEGxGV

Optional: If it’s been a long time since your students have used the Pythagorean Theorem, now would

be a good time to do some Pythagorean Theorem Practice.

Optional: On Writing Code to Calculate Missing Lengths we’ve provided screenshots from two games

where the horizontal and vertical distances between the characters are shown. Students are asked to

write the code to calculate the distance between these characters using the Pythagorean Theoream.

You could also have them do the computations (using a calculator) and compare their results to what

their code evaluates to.

Investigate
Turn to Distance on the Coordinate Plane and look at how line-length is used in the code.

See if you can figure out how to write the code for the second problem.

Then turn to Circles of Evaluation: Distance between (0, 2) and (4, 5). Convert the

expression to a Circle of Evaluation, and then to code.

Then we’ll make sure we really understand it all with Multiple Representations: Distance

between two points by combining circles of evaluation, code, computation and a sketch

on a graph.

For more practice writing code to generate the distance between two fixed points, complete Distance

From Game Coordinates. Optional: more practice can be found at Distance From Game Coordinates 2.

Debrief these pages - or have students pair-and-share - before moving on to writing the full distance

function. Explain to students that all of the practice they’ve done so far today focused on a screenshot

of a moment in time. With the game stopped in that moment, we knew either the exact location of our

characters or the exact distances between them. As we play our games, however, the characters are

constantly changing locations!

Connecting Pythagorean Theorem to video games

We recommend carving out 4.5 minutes and wowing your students with

Tova Brown’s Video of a Geometric Proof of the Pythagorean Theorem

and its application to finding distance between game characters. Then

have them try explaining the proof to one another.

In our case, the lengths A and B are computed by the line-length

function we already have!

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/distance-formula/pages/pythag-practice.pdf
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/distance-formula/pages/distance-write-code-from-lengths.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/distance-formula/pages/distance-on-coordinate-plane.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/distance-formula/pages/distance-coe.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/distance-formula/pages/Distance-bw-Two-Points-Multiple-Representations.pdf
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/distance-formula/pages/Distance-bw-Two-Points-Multiple-Representations.pdf
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/distance-formula/pages/distance-from-game-coordinates.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/distance-formula/pages/distance-from-game-coordinates.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/distance-formula/pages/distance-from-game-coordinates-2.html
https://www.youtube.com/watch?v=Ln7myXQx8TM
https://www.youtube.com/watch?v=Ln7myXQx8TM

In order to calculate the distance between two objects whose locations are constantly

changing, we need to use variables!

Turn to Distance (px, py) to (cx, cy) and use the Design Recipe to help you write a function

that takes in two coordinate pairs (four numbers) of two characters (𝑝𝑥, 𝑝𝑦) and (𝑐𝑥, 𝑐𝑦)

and returns the distance between those two points.

HINT: The code you wrote in Circles of Evaluation: Distance between (0, 2) and (4, 5) can

be used to give you your first example!

When you’re done, fix the broken distance function in your game file, click "Run" and

check that the right triangles in your file now appear with reasonable distances for the

hypotenuse.

Common Misconceptions
It is extremely common for students to put variables in the wrong order. In other words, their program

looks like …​num-sqrt(num-sqr(line-length(x1,y1)) + num-sqr(line-length(x2, y2)))…​ instead of

…​num-sqrt(num-sqr(line-length(x2 x1)) + num-sqr(line-length(y2 y1)))…​

Optional:

If we knew the lengths of the hypotenuse and one leg of the triangle,

could we use the formula 𝐴 + 𝐵 = 𝐶 to compute the length of the other

leg?

Take a look at the two examples on Comparing Code: Finding Missing

Distances.

There’s a subtle difference between the two examples!

What is it?

In the first example, the length of the hypotenuse is missing.

In the second example, the length of a leg is missing.

Can you explain why they need to be written differently?

Finding the hypotenuse requires finding the square root of

the 𝐴 + 𝐵 , whereas finding a leg requires finding the square

root of the difference between 𝐶 and 𝐵 .

2 2 2

2 2

2 2

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/distance-formula/pages/distance.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/distance-formula/pages/distance-coe.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/distance-formula/pages/distance-comparing-code.html
file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/distance-formula/pages/distance-comparing-code.html

In this situation, remind students to look back at what they circled and labeled in the example steps.

This is why we label!

Synthesize
How does the length of the hypoteneuse rely on the length of each side?

Where do you see one formula being used inside the other?

Additional Exercises
Have students use the Design Recipe to solve Word Problem: line-length on their own.

You might also want to have them modify line-length to make use of the absolute value function:

num-abs .

file:///Users/schanzer/Documents/Bootstrap/Development/curriculum/distribution/en-us/lessons/distance-formula/pages/line-length.html

