Name: \qquad

Algebra 2 Student Workbook
 Fall, 2023

Workbook v0.8-beta

Brought to you by the Bootstrap team:

- Emmanuel Schanzer
- Kathi Fisler
- Shriram Krishnamurthi
- Dorai Sitaram
- Joe Politz
- Ben Lerner
- Nancy Pfenning
- Flannery Denny
- Rachel Tabak
- Anders Hulleberg

Visual Designer: Colleen Murphy

Introduction to Computational Data Science

Many important questions ("What's the best restaurant in town?", "Is this law good for citizens?", etc.) are answered with data . Data Scientists try and answer these questions by writing programs that ask questions about data.

Data of all types can be organized into Tables.

- Every Table has a header row and some number of data rows.
- Quantitative data is numeric and measures an amount, such as a person's height, a score on a test, distance, etc. A list of quantitative data can be ordered from smallest to largest.
- Categorical data is data that specifies qualities, such as sex, eye color, country of origin, etc. Categorical data is not subject to the laws of arithmetic - for example, we cannot take the "average" of a list of colors.

The Animals Dataset

This is a printed version of the animals spreadsheet. The numbers on the left side are NOT part of the table! Instead, they are provided to help you identify the index of each row.

	name	species	sex	age	fixed	legs	pounds	weeks
0	Sasha	cat	female	1	false	4	6.5	3
1	Snuffles	rabbit	female	3	true	4	3.5	8
2	Mittens	cat	female	2	true	4	7.4	1
3	Sunflower	cat	female	5	true	4	8.1	6
4	Felix	cat	male	16	true	4	9.2	5
5	Sheba	cat	female	7	true	4	8.4	6
6	Billie	snail	hermaphrodite	0.5	false	0	0.1	3
7	Snowcone	cat	female	2	true	4	6.5	5
8	Wade	cat	male	1	false	4	3.2	1
9	Hercules	cat	male	3	false	4	13.4	2
10	Toggle	dog	female	3	true	4	48	1
11	Boo-boo	dog	male	11	true	4	123	24
12	Fritz	dog	male	4	true	4	92	3
13	Midnight	dog	female	5	false	4	112	4
14	Rex	dog	male	1	false	4	28.9	9
15	Gir	dog	male	8	false	4	88	5
16	Max	dog	male	3	false	4	52.8	8
17	Nori	dog	female	3	true	4	35.3	1
18	Mr. Peanutbutter	dog	male	10	false	4	161	6
19	Lucky	dog	male	3	true	3	45.4	9
20	Kujo	dog	male	8	false	4	172	30
21	Buddy	lizard	male	2	false	4	0.3	3
22	Gila	lizard	female	3	true	4	1.2	4
23	Bo	dog	male	8	true	4	76.1	10
24	Nibblet	rabbit	male	6	false	4	4.3	2
25	Snuggles	tarantula	female	2	false	8	0.1	1
26	Daisy	dog	female	5	true	4	68	8
27	Ada	dog	female	2	true	4	32	3
28	Miaulis	cat	male	7	false	4	8.8	4
29	Heathcliff	cat	male	1	true	4	2.1	2
30	Tinkles	cat	female	1	true	4	1.7	3
31	Maple	dog	female	3	true	4	51.6	4

Categorical or Quantitative?

- Quantitative data measures an amount and can be ordered from smallest to largest.
- Categorical data specifies qualities and is not subject to the laws of arithmetic - for example, we cannot take the "average" of a list of colors.
Note: Numbers can be sometimes be categorical rather than quantitative!
For each piece of data below, circle whether it is Categorical or Quantitative data.

1	Hair color	categorical	quantitative
2	Age	categorical	quantitative
3	ZIP Code	categorical	quantitative
4	Date	categorical	quantitative
5	Height	categorical	quantitative
7	Sex	categorical	quantitative

For each question, circle whether it will be answered by Categorical or Quantitative data.
8 We'd like to find out the average price of cars in a lot.
categorical
quantitative

9 We'd like to find out the most popular color for cars.
categorical quantitative

10 We'd like to find out which puppy is the youngest.
categorical
quantitative

11 We'd like to find out which cats have been fixed.

12 We want to know which people have a ZIP code of 02907.

13 We'd like to sort a list of phone numbers by area code.

Questions and Column Descriptions

What questions can you ask about the animals dataset? For each question, can it be answered by this dataset? Make sure you have at least two questions that can be answered, and at least one that cannot.

Notice	Wonder	Answered by this dataset?
I notice that	...so I wonder	Yes No
I notice that	...so I wonder	Yes No
I notice that	...so I wonder	Yes No
I notice that	...so I wonder	Yes No
I notice that	...so I wonder	Yes No
I notice that	...so I wonder	Yes No
I notice that	...so I wonder	Yes No

Describe the table, and two of the columns, by filling in the blanks below.

1. This dataset is \qquad , which contains \qquad data rows.
2. Some of the columns are:
a. \qquad , which contains column name \qquad
\qquad -
\qquad data. Some example values are:
b. \qquad , which contains \qquad data. Some example values are:
\qquad .

Introduction to Programming

The Editor is a software program we use to write Code. Our Editor allows us to experiment with Code on the right-hand side, in the Interactions Area. For Code that we want to keep, we can put it on the left-hand side in the Definitions Area. Clicking the "Run" button causes the computer to re-read everything in the Definitions Area and erase anything that was typed into the Interactions Area.

Data Types

Programming languages involve different data types, such as Numbers, Strings, Booleans, and even Images.

- Numbers are values like 1, 0.4, 1/3, and -8261.003.
- Numbers are usually used for quantitative data and other values are usually used as categorical data.
- In Pyret, any decimal must start with a 0 . For example, 0.22 is valid, but . 22 is not.
- Strings are values like "Emma", "Rosanna", "Jen and Ed", or even "08/28/1980".
- All strings must be surrounded in quotation marks.
- Booleans are either true or false.

All values evaluate to themselves. The program 42 will evaluate to 42 , the String "Hello" will evaluate to "Hello", and the Boolean false will evaluate to false.

Operators

Operators (like +, - , * < , etc.) work the same way in Pyret that they do in math.

- Operators are written between values, for example: $4+2$.
- In Pyret, operators must always have a space around them. $4+2$ is valid, but $4+2$ is not.
- If an expression has different operators, parentheses must be used to show order of operations. $4+2+6$ and $4+(2$ * 6) are valid, but $4+2$ * 6 is not.

Applying Functions

Applying functions works much the way it does in math. Every function has a name, takes some inputs, and produces some output. The function name is written first, followed by a list of arguments in parentheses.

- In math this could look like $f(5)$ or $g(10,4)$.
- In Pyret, these examples would be written as $f(5)$ and $g(10,4)$.
- Applying a function to make images would look like star(50, "solid", "red").
- There are many other functions, for example num-sqr, num-sqrt, triangle, square, string-repeat, etc.

Functions have contracts, which help explain how a function should be used. Every Contract has three parts:

- The Name of the function - literally, what it's called.
- The Domain of the function - what types of values the function consumes, and in what order.
- The Range of the function - what type of value the function produces.

Strings and Numbers

Make sure you've loaded the code.pyret.org_(CPO), clicked "Run", and are working in the Interactions Area.

Strings

String values are always in quotes.

- Try typing your name (in quotes!).
- Try typing a sentence like "I'm excited to learn to code!" (in quotes!).
- Try typing your name with the opening quote, but without the closing quote. Read the error message!
- Now try typing your name without any quotes. Read the error message!

1) Explain what you understand about how strings work in this programming language. \qquad

Numbers

2) Try typing 42 into the Interactions Area and hitting "Enter".
3) Is 42 the same as " 42 "? Why or why not? Write your answer below:
4) What is the largest number the editor can handle?
5) Try typing 0.5. Then try typing . 5. Then try clicking on the answer. Experiment with other decimals. Explain what you understand about how decimals work in this programming language. \qquad
\qquad
\qquad
6) What happens if you try a fraction like $1 / 3$? \qquad
\qquad
7) Try writing negative integers, fractions and decimals. What do you learn? \qquad
\qquad

Operators

8) Just like math, Pyret has operators like,,$+- *$ and $/$. Try typing in $4+2$, and then $4+2$ (without the spaces). What can you conclude from this?
9) Type in the following expressions, one at a time: $4+2 * 6,(4+2) * 6,4+(2 * 6)$. What do you notice? \qquad
\qquad
10) Try typing in 4 + "cat", and then "dog" + "cat". What can you conclude from this?

Booleans

Boolean-producing expressions are yes-or-no questions and will always evaluate to either true ("yes") or false ("no"). What will each of the expressions below evaluate to? Write down your prediction in the blanks provided and then type the code into the Interactions Area to see what it returns.
Prediction Result Prediction Result

1) $3<=4$	2) "a" > "b"
3) $3=2$	4) "a" < "b"
5) $2<4$	6) "a" == "b"
7) $5>=5$	8) "a" <> "a"
9) $4>=6$	10) "a" >= "a"
11) 3 <> 3	12) "a" <> "b"
13) 4 <> 3	14) "a" >= "b"

15) In your own words, describe what < does.
16) In your own words, describe what $>=$ does.
17) In your own words, describe what <> does.
18) string-contains("catnap", "cat")
19) string-contains("cat", "catnap")
20) In your own words, describe what string-contains does. Can you generate another expression using string-contains that returns true?
21) There are infinite numbers values out there (...-2,-1,0,-1,2...) and infinite string values ("a", "aa", "aaa"...) But how many different Boolean values are there?

Functions for Tables

Open the Animals Starter File and click "Run".
In the Interactions Window on the right, type animals-table and hit "Enter" to see the default view of the table.

sort

Suppose we wanted to see the names of the animals in alphabetical order...

The sort function takes in three pieces of information:

1. A table
2. A column we want to sort the table by (declared using a String)
3. The order in which we want the column sorted (declared using a Boolean)

Test out these two expressions in the Interactions Area and record what you learn about ordering below:

- sort(animals-table, "species", true)
- sort(animals-table, "species", false)

1) true sorts the table... \qquad
2) false sorts the table...

Suppose we wanted to sort the animals-table by the weeks column to determine which animals were adopted quickest...
3) Would you use true or false ? Explain. \qquad
4) Test it out, and write your thinking about quantitative columns at the end of your explanations of true and false above.
5) Which animal(s) were adopted the quickest? \qquad
6) Some functions produce Numbers, some produce Strings, some produce Booleans. What did the sort function produce? \qquad

There are many other functions available to us in Pyret. We can describe them using contracts. The Contract for sort is:
\# sort :: Table, String, Boolean -> Table

- Each Contract begins with the function name: in this case sort
- Lists the data types required to satisfy its Domain: \qquad in this case Table, String, Boolean
- And then declares the data type of the Range it will return. _ in this case Table

Contracts can also be written with more detail, by adding variable names in the Domain:
\# sort :: ($\left.\frac{\text { Table }}{\text { table-name }}, \frac{\text { String }}{\text { column-name }} \frac{\text { Boolean }}{\text { order }}\right)$-> Table
Suppose we wanted to sort the animals-table by the legs column to determine which animals had the most legs...
7) Fill in the blanks below with the code you'd use (We've put pieces of the Contract below each line to help you!):

(\qquad , \qquad , order::Boolean
8) Which animal(s) had the most legs? \qquad
9) Think of another question you might answer quickly by sorting the table.
10) What code would you write to answer your question?
\qquad
1 \qquad , \qquad , order::Boolean

Functions for Tables (continued)

count

\# count :: Table, String -> Table

1) What is the Domain of count ? \qquad
2) What is the Range of count ? \qquad
3) What do you suspect the String in the Domain will describe? \qquad

Suppose we wanted to know how many animals had 4 legs...

Type count(animals-table, "legs") into the Interactions Area and click "Enter"
4) What did the expression produce? \qquad
5) How many animals had 4 legs? \qquad
6) Think of another question you might be able to answer with the count function.
7) Fill in the blanks with the code you'd write.

8) Tables that summarize data with a count are commonly used in the real world. Give two examples of where you've seen them before:

- Example 1: \qquad
- Example 2: \qquad

9) Newscasters and journalists often incorporate data into their reporting. How else might they display this information, besides using a table?

first-n-rows

10) Type first-n-rows(animals-table, 5).What happens?
11) If we wanted a table of the first 3 rows of the animals-table, what code would you write? \qquad
12) What is the Contract for first-n-rows ? \qquad

What happens when you type first-n-rows(sort(animals-table, "pounds", true), 5)?

Note: The Domain for first-n-rows is Table, Number. In this case, the output of sort(animals-table, "pounds", true) is the Table!

See if you can figure out how to compose the code that would generate a table of the 10 oldest animals!
\qquad

- \qquad
\qquad
function-name
Table
Number

Circles of Evaluation: Count, Sort, First-n-rows

For each scenario below, draw the Circle of Evaluation and then use it to write the code.
When you're done, test your code out in the Animals Starter File and make sure it does what you'd expect it to.
\# count :: Table, String -> Table
\# first-n-rows :: Table, Number -> Table
\# sort :: Table, String, Boolean -> Table

1) We want to see the 10 animals who were adopted the quickest.

Circle of Evaluation:
code: \qquad
2) We want to see the heaviest animal

Circle of Evaluation:
code: \qquad
3) We want to take the first 8 animals from the table and put them in alphabetical order (by name).

Circle of Evaluation:
code: \qquad
4) You notice that the lightest 16 animals weigh under 10 pounds and you want to know the count by species of those animals. Circle of Evaluation:
code: \qquad

Exploring Displays

In the Animals Starter File, use the contracts below to make each type of display. Then answer the questions below.
Bar Charts \# bar-chart :: Table, String -> Image

Pie Charts\# pie-chart :: Table, String -> Image
\qquad
\qquad

Sketch a pie chart below.
Pie charts summarize 1 column of \qquad data. This kind of display tells us...

Box Plots \# box-plot :: Table, String -> Image

1 \qquad ,
 -) Sketch a box plot below.

Box plots summarize 1 column of \qquad data.

This kind of display tells us...

Histograms \# histogram :: Table, String, String, Number -> Image

Circles of Evaluation: Composing Functions to Make Displays

Using the Contracts below as a reference, draw the Circle of Evaluation for each prompt.
\# pie-chart :: Table, String -> Image
\# box-plot :: Table, String -> Image
\# bar-chart :: Table, String -> Image
\# histogram :: Table, String, String, Number -> Image
\# first-n-rows :: Table, Number -> Table
\# sort :: Table, String, Boolean -> Table

1) Make a bar-chart of the lightest 16 animals by sex.
*) What other bar chart might you want to compare this to? \qquad
2) Take the heaviest 20 animals and make a histogram of weeks to adoption (use "species" for your labels).
\star) What other histogram might you want to compare this to?
3) Make a box-plot of age for the 11 animals who spent the most weeks in the shelter.
\star) What other box plot might you want to compare this to? \qquad
4) Make a pie-chart of species for the 18 animals who spent the fewest weeks in the shelter.
*) What other pie chart might you want to compare this to?

Exploring the States Dataset

Open the State Demographics Starter File and Save a Copy of the file that's just for you.
Then, click "Run" and type states-table into the Interactions Area on the right to see the dataset.

What do you Notice about this dataset?

1) What code will produce a table showing the number of states in each region? \qquad
2) Which states do you think have the most people? \qquad
3) What code will produce a table containing the five states with the largest population in 2020 ?
4) Which states do you think have the most poverty? \qquad
5) What code will produce a table containing the ten states with the highest poverty rate?
6) What code will produce a table containing the states with the lowest median income?
7) What code will produce a table containing the states with the lowest per-capita ("average" or "mean") income?

What does it mean if a state has a higher per-capita income than median-income? \qquad

The two lines of code under \# Def ine some rows extract rows 0 and 1 from the table, and define them as a labama and a laska.
8) Type alabama into the Interactions Area. What do you get back? \qquad
9) Underneath the definition of those rows, add a new definition for california and click "Run", so that Pyret reads your new definition.
10) Add a definition for your own state, then click "Run" and test it out in the Interactions Area!
11) Add any additional Notices or Wonderings you have about this dataset to the table at the top.

Looking for Patterns

Open your copy of the State Demographics Starter File.

Part 1

1) What columns do you think might be related to one another? (e.g. - is the number of veterans related the amount of land-area? Is the population in 2010 related to the population in 2020?) List three possible relationships below.
a. I think that \qquad may be related to \qquad
b. I think that \qquad may be related to \qquad
c. I think that \qquad may be related to \qquad
```
# scatter-plot :: (Table, String
```

2) Use the Contract above to make a scatter-plot for the first relationship you wrote.
a. What states border your own? Find your state and its neighbors by mousing over the display. How do they compare? \qquad
b. If there's a pattern in this scatter-plot, what does that mean? If there isn't, what does that mean? \qquad
3) Make a scatter-plot for the second relationship you wrote. Then find your home state, and its neighbors.
a. How does your home state compare to the neighboring ones? \qquad
b. If there's a pattern in this scatter-plot, what does that mean? If there isn't, what does that mean? \qquad
4) Make a scatter-plot for the third relationship you wrote. Then find your home state, and its neighbors.
a. How do they compare? \qquad
b. If there's a pattern in this scatter-plot, what does that mean? If there isn't, what does that mean? \qquad

Part 2

Wait to complete this until after diving deeper into statistical relationships!
Revisit the three scatter plots you made and add the following labels to the descriptions you wrote in Question 1:

- Place an "L" by any relationships that you think might be linear.
- Place a "P" by any relationships that were positive.
- Place an " N " by any relationships that were negative.
- Place an "S" by the strongest-looking relationship.
- Place a "W" by the weakest-looking relationship.

Identifying Form, Direction and Strength

What do your eyes tell you about the Form, Direction, \& Strength of these displays?
Note: If the form is nonlinear, we shouldn't report direction - a curve may rise and then fall.

A

Form:	Linear	Nonlinear	None
Direction:	Positive	Negative	N/A
Strength:	Strong	Weak	

B

Form:	Linear	Nonlinear	None
Direction:	Positive	Negative	N/A
Strength:	Strong	Weak	

C

Form:	Linear	Nonlinear	None
Direction:	Positive	Negative	N/A
Strength:	Strong	Weak	

E

Form:	Linear	Nonlinear	None
Direction:	Positive	Negative	N/A
Strength:	Strong	Weak	

Identifying Form, Direction and Strength (Matching)

Match the description (left) with the scatter plot (right).
Note: The computer won't tell us if the relationship we see in a scatter plot is linear, so we must train our eyes to decide this ourselves. For linear relationships, we should train our eyes to assess their direction and get a feel for their strength, rather than relying completely on what numbers the computer reports.

The relationship appears to be linear, negative, and of moderate strength.

1

2

3 appear to be related.

The relationship appears to be linear, positive, and strong.

The relationship appears to be linear, negative, and strong.

A

B

D

Build a Model from Samples: College Degrees v. Income

Open your copy of the State Demographics Starter File. If you haven't already, Save a Copy now.

1) Record the pct-college-or-higher and median-income values for the a labama and a laska rows, as (x, y) pairs below:

2) Using the space below, compute the equation of the line passing between these two points. This line will be your linear model (also known as the "predictor function", or "line of best fit"), which predicts median-income as a function of pct-college-or-higher.
3) Write the complete model below (in both Function and Pyret notation):
$f(x)=$ \qquad $x+$ \qquad fun $f(x)$: \qquad * x) + \qquad end

- Type your function into the Definitions Area on the left, modifying the existing function $f(x)$.
- Then click "Run", and make sure you fix any errors or warnings.
- In the Interactions Area, try plugging in the pct-college-or-higher value for Alabama by typing f(22.6)

4) How well does it predict the correct median income for Alabama? \qquad What about Alaska? \qquad
Consider: If it doesn't predict it perfectly, why might that be?
Try different pct-college-or-higher values from other states, to see how well our Alabama-Alaska model fits the rest of the country.
5) Identify a state for which this model works well: \qquad
6) Identify a state for which this model works poorly: \qquad
7) What median income does this model expect a state without ANY college graduates (0\%) to earn? \qquad

Fit a Model: College Degrees v. Income

This page will require you to work with your copy of the State Demographics Starter File in which you should have already defined $f(x)$ based on your work on Fit a Model: College Degrees v. Income.

Type fit-model(states-table, "state", "pct-college-or-higher", "median-income", f) in the Interactions Area.

1) Find the points for $A L$ and $A K$ along the predictor line.
2) What do you Notice?
\qquad
\qquad
3) What do you Wonder?
\qquad
\qquad
4) In the upper left corner, you'll see that it says "R-sqr", followed by a number. What is that number? \qquad
5) Change the definition of f so that the slope is less steep and click "Run". What is the R^{2} value now? \qquad
6) Change the definition of f so that the slope is negative and click "Run". What is the R^{2} value now? \qquad
7) Change the definition of f so that it draws a horizontal line and click "Run". What is the R^{2} value? \qquad
8) Change the y-intercept so that the horizontal line passes through more of the points. What is the R^{2} value? \qquad
9) What do you think R^{2} tells us? \qquad
\qquad
\qquad
\qquad

Better Modeling: College Degrees v. Income

Open your copy of the State Demographics Starter File.

Build a Model through Trial \& Error

In the \# Define some rows section, look closely at the definitionsfor alaska and alabama.
Add two new definitions for MA (row 21) and NV (row 28).

1) Record the college-or-higher and median-income values for MA and NV , as (x, y) pairs below:

2) Derive the MA-NV model (using the same steps you followed to derive the AL-AK model on Fit a Model: College Degrees v. Income) and write it below (in both Function and Pyret notation), then fit the model and record the R^{2} :
$g(x)=$ \qquad x+ \qquad
fun $g(x)$: \qquad * x$)+$ \qquad end
R^{2} : \qquad
3) Identify two other states that you think would make a better model: \qquad and \qquad .

- Add two new definitions for these states to your State Demographics Starter File.

4) Record the college-or-higher and median-income values for these states, as (x, y) pairs below:
(__ college-or-higher
, \qquad -)
(__ college-or-higher,\longrightarrow median-income $)$
5) Derive your model and write it below (in both Function and Pyret notation), then fit the model and record the R^{2} :
$h(x)=$ \qquad x+ \qquad fun $h(x)$: \qquad * x) + \qquad end
$R^{2}:$ \qquad
6) Adjust the slope and y-intercept of your model to get the best R^{2} possible. Write the best model (and R^{2}) below:
$\operatorname{best}(x)=$ \qquad $x+$ \qquad fun best(x): (\qquad * x$)+$ \qquad end
R^{2} : \qquad

Build a Model Computationally

lr-plot computes the optimal linear model using all of the data points.
7) Evaluate lr-plot(states-table, "state", "college-or-higher", "median-income").What is $R^{2 ?}$? \qquad
8) On the line below, write the optimal linear model that was computed through linear regression: optimal $(x)=$ \qquad x+ \qquad fun optimal(x): \qquad * x) + \qquad end

Interpreting Linear Models

Open your copy of the State Demographics Starter File.
We started with a model based on Alabama and Alaska. We can interpret the slope and R^{2} value below:

The	Alabama-Alaska	model predicts that a 1		increase in		
	percent college degrees [x-axis]	is associated with a	[slope, y-units]		increase increase / decrease	
	median household income [y-axis]	. Based on the R^{2} of	$\begin{aligned} & -15.63 \\ & R^{2} \text { value } \end{aligned}$, this model fits	really, reall really well, decen	$\begin{aligned} & \text { poorl } \\ & \text { y, poorl } \end{aligned}$
1) Describe the optimal model YOU created via linear regression:						
	linear-regression sensible name	model predicts that a 1		nt increase in		
	percent college degrees [x-axis]	is associated with a __Is			increase/decrease	in
	median household income [y-axis]	With an R^{2} of	, this model fits		really well, decently,	orly, et

2) What does the slope of this linear model tell us? \qquad
3) What does the y-intercept of this linear model tell us? \qquad
4) Suppose a state goes from 10% to 11% college graduation. According to this model, what kind of change would we expect to see in the median household income? \qquad What if it goes from 50% to 51% ? \qquad From 90\% to 91\%? \qquad
5) Does this model predict the same increase in income for every additional 1% college-or-higher? Why or why not? \qquad
6) Use fit-model to fit your model to the scatter plot again, but swap the x - and y-columns. Do you get the same R^{2} ? Why or why not?
\qquad
\qquad
\qquad
\qquad
7) Describe another model you created:

The \qquad model predicts that a 1 \qquad increase in
 -

WhichForm is Best?

For each set of data provided below,

- Decide which form of the line would be the easiest to build from the available information.
- Write a definition of the linear model in that form.
- Translate the definition into Pyret notation.

1

Linear Model:
slope-intercept form? point-slope form? standard form?
fun $f(x)$: \qquad end

Linear Model:
slope-intercept form? point-slope form? standard form?
fun $f(x)$: \qquad end

Linear Model:
slope-intercept form? point-slope form? standard form?
\qquad end

Exploring the Fuel Efficiency Dataset

For this page, you'll need to open the Fuel Efficiency Starter File on your computer. If you haven't already, select Save a Copy from the "File" menu to make a copy of the file that's just for you. Read the comments at the top of the file, which describe what each column in the dataset means.

Fitting Linear Models

1) Evaluate $A 15, A 45$ and A75 in the Interactions Area. What model of car is used in all three rows? \qquad
2) At what three speeds is this model being tested in these rows? \qquad
3) Does there appear to be a relationship between speed and miles-per-gallon? \qquad .
4) If so, describe its form (e.g. - linear or curved) and strength (strong, moderate, or weak).

If it appears to be linear, what is the direction? If it does not appear to be linear, describe its shape.
5) Use lr-plot(mpg-table, "model", "speed", "mpg") to find the optimal linear model. What is the R^{2} ? \qquad
Write the model below, in both math and Pyret notation.
$f(x)=$ \qquad $x+$ \qquad fun $f(x)$: \qquad * x) + \qquad end
6) Is the best-possible linear model good? \qquad Why or why not? \qquad

Fitting Curves

7) Sketch your Ir-plot in the space below, showing the relationship between speed and mpg. Be sure to label your axes, and draw the linear model!

8) What do you Notice? \qquad
9) What do you Wonder? \qquad
\qquad
\qquad
10) Do you think a curve would fit better? \qquad
11) Draw a curve on your scatter-plot, which shows the overall shape in the data.
12) At what speed does your curve "peak"? \qquad

Decide whether each situation describes a linear or quadratic function, and circle your answer.

1) A ball is dropped from the top of the Empire State Buiding, and it accelarates at just under $10 / \mathrm{m} / \mathrm{s}$. How far has the ball dropped after x seconds?

Linear Quadratic
2) A car is 50 miles away, traveling at 65 mph . How far away is the car after each hour?

Linear
 Quadratic

3) The data plan for a cell phone bill costs $\$ 5 / \mathrm{gb}$, plus $\$ 15 / \mathrm{mo}$. How much is the bill for a given month, after x number of gigabytes?

Linear
Quadratic
4) A ball is dropped from the top of the Empire State Buiding, and it accelarates at just under $10 / \mathrm{m} / \mathrm{s}$. How fast is the ball moving after x seconds?

Linear
Quadratic
5) A cannonball is fired from the deck of the S.S. Parabola, and arcs through the sky before hitting its target, 17 miles away.

Linear Quadratic
6) The area of a circle, as its radius increases

Linear
Quadratic
7) The circumference of a circle, as its radius increases

Linear
Quadratic

What Kind of Model?(Tables)

Decide whether each representation is best described by a linear model, a quadratic model or neither! Show any work that you feel is useful. For Class Discussion:

\mathbf{x}	0	1	2	3	4	5	6	
\mathbf{y}	5	6	9	14	21	30	41	
2	\mathbf{x}	0	1	2	3	4	5	6
	\mathbf{y}	0	3	6	9	12	15	18

Linear
Quadratic
Neither

Linear
Quadratic
Neither

For Independent Practice:

1) Sketch a parabola on each of the grids below that matches the description.

2) Label the vertex, root(s), and y-intercept of the parabola below with:
A) their coordinates
B) the vocabulary word (above) that describes each

3) Draw a dotted line representing the axis of symmetry and label it with the equation that defines it.

Graphing Quadratic Models

Open Exploring Quadratic Functions (Desmos). The parabola you'll see is the graph of $f(x)=x^{2}$. Another, identical parabola is hiding behind it. This second parabola is written in Vertex Form: $g(x)=a(x-h)^{2}+k$. Each coefficient starts at values to make $g(x)$ equivalent to $f(x)$.

1) Using the values of a, h, and k from Desmos, write the Vertex Form of $f(x)=x^{2}: f(x)=$ \qquad

Magnitude a

2) Try changing the value of a to $-4,0$, and 2 , graphing each parabola in the squares below. Be sure to identify and label the vertex and any roots with "V" and "R"!

3) What does a tell us about a parabola? \qquad

Horizontal Translation h

4) Set a back to 1 . Change the value of h to $-5,0$, and 5 , graphing each parabola in the squares below. Be sure to identify and label the vertex and any roots with " V " and " R "!
$h=-5$
5) M/hat dnac ıtalluc shnitanarahols?

Vertical Translation k

6) Set h back to 0 . Change the value of k to $-5,0$, and 5 , graphing each parabola in the squares below. Be sure to identify and label the vertex and any roots with " V " and " R "!
$k=-5$

7) What does k tell us about a parabola?

Modeling Fuel Efficiency v. Speed

Open your copy of the Fuel Efficiency Starter File and click "Run".
Before we try to model our fuel-efficiency data, we need to learn a new Pyret function!

1) Can you predict what the output of the following expressions will be? Enter them into the Interactions Area, and record the result.
num-sqr(4)
\qquad
num-sqr(6-2)
\qquad
2) What is the Contract for num-sqr ? \qquad
3) What does num-sqr do ?

Interpreting a Quadratic Model

In the Definitions Area of your Fuel Efficiency Starter File, you'll find the definition of a quadratic model quad1 .
4) In quad1, the value of a is \qquad , the value of h is \qquad , and the value of k is \qquad
5) Fit this model to your dataset, using fit-model. What R^{2} value did you get? \qquad
Hint: If you forgot the contract for fit-model, look it up in the contracts pages!
6) In your own words, describe what needs to change about this model to fit the data. \qquad

Modeling Fuel Efficiency

```
Vertex Form: }\quady=a(x-h\mp@subsup{)}{}{2}+
```

- a : determines whether the parabola opens up or down and how steep the curve is
- h :x-coordinate of the vertex
- k : y-coordinate of the vertex (in quadratic models, this is also the vertical shift!)

7) We've determined that peak fuel efficiency is around 45 mph . What variable in the equation should we replace with 45 ? \qquad
Update the definition of quad1 , click "Run" and re-fit the model. What R^{2} value did you get? \qquad
8) What y-coordinate of the vertex would best match the shape of the curve? \qquad
Update the definition of quad1 , click "Run" and re-fit the model. What R^{2} value did you get? \qquad
9) What value of a best matches the shape of the curve? \qquad
Update the definition of quad1 , click "Run" and re-fit the model. What R^{2} value did you get? \qquad
10) See any small changes you'd like to make to the definition, trying to get R^{2} as close to 1 as you can? Write your final definition below.
\qquad end
R^{2} : \qquad

What does this model actually mean? Try completing the sentence below:
After experimenting, I came up with a quadratic model showing that speed explains \qquad \% of the variability in gas mileage for _, which means that \qquad cars in this dataset. The vertex of the parabola drawn by this model is \qquad

How does the fact that the value of a is negative impact this parabola? \qquad

Looking up Rows and Columns

We can define names for values in Pyret, the same way we do in math:

```
name = "Flannery"
age = 16
logo = star(50, "solid", "red")
```

When looking up a data Row from a Table, programmers use the row-n function. This function takes a Table and a Number as its inputs. The numbers tell the computer which Row we want from the Table. Note: Rows are numbered starting at zero!
For example:

$$
\begin{aligned}
& \text { sasha }=\text { row-n(animals-table, 0) \# define Sasha to be the first row } \\
& \text { mittens }=\text { row-n(animals-table, 2) } \quad \text { \# define Mittens to be the third row }
\end{aligned}
$$

When we define these rows, it's more useful to name them based on their properties, rather than their identifiers:

```
cat-row = row-n(animals-table, 0) # Sasha is a cat
dog-row = row-n(animals-table, 10) # Toggle is a dog
```

When looking up a column from a Row, programmers use square brackets and the name of the column they want.
For example:

```
# these two lines do the same thing! We can use the defined name to simplify our code
row-n(animals-table, 0)["age"] # look up Sasha's age (in row 0)
cat-row["species"], # look up Sasha's age (using the defined name)
dog-row["age"] # look up Toggle's age (using the defined name)
```


Lookup Questions

The table below represents four pets at an animal shelter:

pets-table	sex	age	pounds
name	"female"	3	48
"Toggle"	"male"	4	92
"Nritz"	"female"	6	35.3
"Maple"	"female"	3	51.6

1) Match each Lookup Question (left) to the code that will give the answer (right).
"How much does Maple weigh?"
"Which is the last row in the table?
"What is Fritz's sex?" 3
"What's the third animal's name?" 4
"How much does Nori weigh?"
"How old is Maple?"
"What is Toggle's sex?" 7
"What is the first row in the table?"

1

2

5

6

8

A row-n(pets-table, 3)

B row-n(pets-table, 2)["name"]

C row-n(pets-table, 1)["sex"]

D row-n(pets-table, 3)["age"]

E row-n(pets-table, 3)["pounds"]

F row-n(pets-table, 0)

G row-n(pets-table, 2)["pounds"]

H row-n(pets-table, 0)["sex"]
2) Write the Pyret code that will produce each value on the right.

a.	row-n(pets-table, 3)["name"]	"Maple"	
b.			"male"
c.		4	
d.		48	
e.		4	

Consider the table below, and the four value definitions that follow:
shapes-table

name	corners	is-round
"triangle"	3	false
"square"	4	false
"rectangle"	4	false
"circle"	0	true
shapeA $=$ row-n(shapes-table, 0) shapeB $=$ row-n(shapes-table, 1) shapeC $=$ row-n(shapes-table, 2) shapeD $=$ row-n(shapes-table, 3)		

1) Match each Pyret expression (left) to the description of what it evaluates to (right).
shapeD 1
shapeA 2
shapeB["corners"]
3
shapeC["is-round"]
4
shapeB["name"] 5
shapeA["corners"]
6
shapeD["name"] == "circle" 7

A Evaluates to 4

B Evaluates to the last row in the table

C Evaluates to "square"

D Evaluates to true

E Evaluates to false

F Evaluates to 3

G Evaluates to the first row in the table
2) Fill in the blanks (left) with the Pyret lookup code that will produce the value (right).

Defining Rows

We've already given you two row definitions: cat-dog and dog-row:

```
cat-row = row-n(animals-table, 0) # Sasha is a cat
dog-row = row-n(animals-table, 10) # Toggle is a dog
```

Remember: rows start at index zero! Use this to answer the questions below. (HINT: turn to The Animals Dataset and number the data rows first, then answer the questions below.)

1) The index of a row containing a lizard is
2) The index of a row containing a rabbit is \qquad
3) The index of a row containing a fixed animal is
4) The index of a row containing a male animal \qquad
5) The index of a row containing a female animal is \qquad
6) The index of a row containing a hermaphroditic animal is
7) The index of a row containing an unfixed animal is \qquad
8) The index of a row containing a young animal (<2 years) is \qquad
9) The index of a row containing an old animal (>10 years) is \qquad
10) What code would you write to define lizard-row?
11) What code would you write to define rabbit-row?
12) What code would you write to define fixed-row?
13) What code would you write to define male-row?
14) What code would you write to define fema le-row?
15) What code would you write to define hermaph rodite-row?
16) What code would you write to define young-row?
17) What code would you write to define old-row?

Add this code to your Animals Starter File! You'll want these rows for later!

Exploring the Covid Dataset

For this page, you'll need to have the Covid Spread Starter File open on your computer. If you haven't already, select Save a Copy from the "File" menu to make a copy of the file that's just for you.

1) Click "Run", and evaluate covid-table in the Interactions Area.
2) Take a look at the Definitions Area and find the "notes on columns". What is the start date for the data in this table? \qquad
3) In the Definitions Area we see rows defined for Connecticut (CT1), Massachusetts (MA1) and Maine (ME1).

What happens when you evaluate MA1 in the Interactions Area? \qquad
4) Evaluate CT1. What information do you learn? \qquad
5) Define three new Rows called VT1,NH1 and RI1 for Vermont, New Hampshire and Rhode Island. Click "Run" and test them out.
a. How many people in Vermont tested positive on June 21st, 2020? \qquad
b. How many people in New Hampshire tested positive on June 21st, 2020? \qquad
c. How many people in Rhode Island tested positive on June 21st, 2020? \qquad
6) In Pyret, make a scatter plot showing the relationship between day and positive, using state as your labels, then sketch the resulting scatter plot below.

7) In which state did the number of cases grow fastest?
8) In which state did the number of cases grow slowest?
\qquad
9) Are these strong or weak relationship(s)?
10) What do you Notice? \qquad
\qquad
11) What do you Wonder? \qquad

Filtering by State

For this page, you'll need to have the Covid Spread Starter File open on your computer. If you haven't already, select Save a Copy from the "File" menu to make a copy of the file that's just for you.

1) Use lr-plot to obtain the best-possible linear model for the relationship between day and positive in the covid-table.
a. What do you notice about the line? \qquad
b. What is the R^{2} value? \qquad and what does it tell us about the model?
\qquad
2) Find the function called is-MA in the Definitions Area under "Define some helper functions". Read the comments carefully! a. What is the Domain of is-MA ? \qquad Its Range? \qquad
b. What do you think is-MA(MA1) will evalute to? \qquad . is-MA(CT1) ? \qquad . is-MA(ME1) ? \qquad

Try typing each of these helper functions into the Interactions Area on the right and confirm you were correct.
3) Find MA-table in the Definitions Area under "Define some grouped and/or random samples".
a. What is that code doing? \qquad
b. Type MA-table into the Interactions Area. What does it evaluate to? \qquad
4) Use $1 r-p l o t$ to obtain the best-possible linear model for the relationship between day and positive in the MA-table.
a. What is the R^{2} value? \qquad
b. What does it tell us about the model? \qquad
5) Using the code for is-MA and MA-table as a model, define a new function is-VT and create a grouped sample called VT-table .

Use lr-plot to obtain the best-possible linear model for the relationship between day and positive in the VT-table.
a. What is the R^{2} value? \qquad
b. What does it tell us about the model? \qquad
6) Why do these state-specific models fit so well, when model for all of New England fits so poorly?

Linear ModelsforMA-table

Fitting the Model Visually $f(x)=m x+b$

For this section, you'll need to have Modeling Covid Spread (Desmos). open on your computer.

1) Try changing the value of m and b to find three promising linear models, graphing each one and labeling your values in the grids below.

Fitting the Model Programmatically $f(x)=m x+b$
For this section, open your copy of the Covid Spread Starter File.
2) In the Definitions Area, define the three models you fit in Desmos, calling them linear1, linear2 and linear3 to
3) Use fit-model to determine the R^{2} value of each of your models for the MA-table.
R^{2} for linear1: \qquad R^{2} for linear2: \qquad R^{2} for linear3: \qquad
4) Use $l r-p l o t ~ t o ~ o b t a i n ~ t h e ~ b e s t-p o s s i b l e ~ l i n e a r ~ m o d e l ~ f o r ~ t h e ~ M A ~ C o v i d ~ d a t a s e t . ~$

- $y=$ \qquad
- $R^{2}=$ \qquad

5) Look at the equation $l r-p$ lot generated. Do you see an e? What does it mean? \qquad
6) How does the model generated by $l r-p$ lot compare to the ones you fit visually in Desmos? \qquad
\qquad

Are Linear Models a Good Fit for This Data?

7) Would you feel good about making predictions based on these models? Why or why not? \qquad
\qquad
\qquad
\qquad

Quadratic Models for MA-table

Fitting the Model Visually $f(x)=a(x-h)^{2}+k$

For this section, you'll need to have Modeling Covid Spread (Desmos) open on your computer.

1) Try changing the values of a, h and k to find three promising quadratic models, graphing each one and labeling your values in the grids below.

Fitting the Model Programmatically $f(x)=a(x-h)^{2}+k$

For this section, open your copy of the Covid Spread Starter File.
2) In the space below, define quad ratic1 to be the first model you fit in Desmos.
fun quadratic1(x): (\qquad * (num-sqr(x - \qquad))) + \qquad end
3) In the Definitions Area, define quadratic1, quad ratic2 and quadratic3 to describe the three models you fit in Desmos.
4) Use fit-model to determine the R^{2} value of each of your models for the MA-table.
R^{2} for quad ratic1: \qquad R^{2} for quad ratic2: \qquad R^{2} for quad ratic3: \qquad

Are Quadratic Models a Good Fit for This Data?

5) Would you feel good about making predictions based on these models? Why or why not? \qquad
\qquad
\qquad
\qquad

Graphing Exponential Models

To complete this page, you'll need to open Modeling Covid Spread (Desmos). The curve you'll see is the graph of $h(x)=2^{x}$.
Another, curve $f(x)$ is hiding behind it. For starters, the values of the coefficients of $f(x)$ have been set to make it equivalent to $h(x)$.

Base b

1) Set k back to 0 , then try different values of b. For what values is the function undefined (the line disappears)? \qquad
2) Keeping $a=1$ and $k=0$, change math $\{b\}$ to $0.5,1$, and 2 , graphing each curve below. For each curve, label the coordinates at $\mathbf{x}=1,2$, and 3 .

3) What does b tell us about an exponential function, when b is greater than 1 ? \qquad
4) What does b tell us about an exponential function, when b is less than 1 ? \qquad

Vertical Shift...and Horizontal Asymptote k

5) Keeping $a=1$ and $k=0$, try changing the value of k to $-10,0$, and 10 , graphing each curve in the squares below. For each curve, find and label the y-value where the curve is "most horizontal", then draw a horizontal line at that y-value.

6) What does k tell us about an exponential function?

Initial Value a

7) Set $k=0$ and $b=2$. Change the value of a to 10,2 , and -5 , graphing each curve in the squares below. For each curve, label the y-intercept ($\mathrm{x}=0$).

8) What does a tell us about an exponential function?

What Kind of Model? (Graphs \& Plots)

Decide whether each scatter plot appears to best be described by a linear, quadratic, or exponential model.

1) Linear
Quadratic
Exponential

2) Linear

Quadratic
Exponential

5) Linear

Quadratic
Exponential
6) Linear

Quadratic
Exponential
2) Linear Quadratic Exponential

4) Linear
Quadratic
Exponential

What Kind ofModel?(Tables)

Decide whether each table is best described by a linear, quadratic, or exponential model.
If the model is exponential: Is it doubling (factor of 2)? Tripling (factor of 3)? Factor of 5? 10?

x	y
1	5
2	10
3	15
4	20
5	25
6	30
7	35

1) Linear

Quadratic
Exponential__ factor

x	y
0	10
1	100
2	1000
3	10000
4	100000
5	1000000
6	10000000

2) Linear Quadratic Exponential_ factor

\mathbf{x}	\mathbf{y}
70	-210
71	-169
72	-81
73	-34
74	15
75	66
76	119

\mathbf{x}	\mathbf{y}	
-3	36	
-2	16	
-1	4	
0	0	
1		16
2	Quadratic	
3		Exponential
4$)$	Linear factor	

x	y
0	1
1	2
2	4
3	8
4	16
5	32
6	64

x	y
-5	1
-4	6
-3	36
-2	216
-1	1296
0	7776
1	466656

5) Linear

Quadratic
Exponential \qquad
6) Linear
Quadratic
Exponential \qquad

What Kind of Model? (Definitions)

Decide whether each representation describes a linear, quadratic, or exponential function. If the function is exponential: Identify the growth factor and the initial value.

$$
f(x)=6 x^{2}-5
$$

1) Linear

Quadratic
Exponential

$$
\operatorname{cost}(w)=1.2^{w}+16
$$

3) Linear

Quadratic
Exponential

$$
\operatorname{price}(d)=d^{2}+6 d
$$

5) Linear

Quadratic
Exponential

$$
f(x)=20000-4.1^{x}
$$

7) Linear

Quadratic
Exponential
8) Linear

Quadratic
Exponential

What Kind ofModel?(Descriptions)

Decide whether each situation is best described by a linear, quadratic, or exponential function.
If the function is exponential: What is the growth factor. Is it doubling (factor of 2)? Tripling (factor of 3)? Factor of 5? 10?

1) The resale value of a car drops by a fixed percentage each year. A particular kind of car sells for $\$ 32,000$, and its value drops by 12.5% each year

a. When the car is brand-new $(x=0)$, how much is it worth?

\$32,000
b. How much is it worth after 1 year ($x=1$)?
c. After two years ($\mathrm{x}=2$) ? \qquad After three years ($\mathrm{x}=3$)? \qquad Four ($x=4$)? \qquad
d. What is the form of this function (linear, quadratic, or exponential)?
e. If it's exponential, what is the initial value? \qquad The base? \qquad Is it growth or decay?
\qquad
e.fis expone whal is
\qquad
2) Sally is selling lemonade, for $\$ 1.25$ a glass. She starts with $\$ 20$ in cash, and hopes that by selling lemonade she will finally be able to get the power drill she's been wanting.
a. When Sally starts the day ($x=0$), how many dollars does she have?
b. How many dollars will she have after the first sale ($x=1$)? \qquad
c. After the sale ($x=2$)? \qquad The third ($x=3$)? \qquad The fourth ($x=4$)?
d. What is the form of this function (linear, quadratic, or exponential)?
e. If it's exponential, what is the initial value? \qquad The base? \qquad Is it growth or decay?
\qquad
\qquad
\qquad
3) Mrs. Bidwell's club rules are that every student should high-five every other student. She starts out her year with only two students, but a new one joins the club every day.
a. How many high-fives happen at the start $(x=0)$, with 2 students?

1
b. How many high-fives happen the next day $(x=1)$, with 3 students?
c. With a fourth? $(x=2)$? \qquad A fifth ($x=3$)? \qquad A sixth ($x=4$)?
d. What is the form of this function (linear, quadratic, or exponential)?
e. If it's exponential, what is the initial value? \qquad The base? \qquad Is it growth or decay?
4) A meme goes viral on the internet, starting with one person posting an animation of a puppy doing a backflip into a pile of laundry. Every person that sees the meme falls in love with it, sharing it with 25 new friends.
a. When the person posts it $(x=0)$, how many total times has it been shared?
b. How many times will it have been shared after those friends share it ($x=1$)?
\qquad
\qquad
c. When $\mathrm{x}=2$? \qquad When $x=3$? \qquad When $x=4$?
d. What is the form of this function (linear, quadratic, or exponential)?
e. If it's exponential, what is the initial value? \qquad The base? \qquad Is it growth or decay?

Fitting the Model Visually $f(x)=a b^{x}+k$

For this section, you'll need to have Modeling Covid Spread (Desmos). open on your computer.

1) Try changing the value of k, then a, then b to find three promising exponential models, graphing each one and labeling your values on the grids below.

Fitting the Model Programmatically $f(x)=a b^{x}+k$

For this section, open your copy of the Covid Spread Starter File.
2) In the space below, define exponential1 for one of the models you fit in Desmos.
fun exponential1(x): (\qquad * num-expt (\qquad , (~1*x))) + \qquad end
Two Notes on this function definition:

- num-expt is the function that we use for exponents. It takes in 2 numbers: the base and the power, in this case band x.
- At first it may appear that x is being multiplied by negative $1(-1)$, when it is actually being multiplied by ~1 (literally the value "roughly 1 "). This tells Pyret to round off the calculation, prioritizing speed over precision to get a result that is "roughly accurate". We've added this to the function definition so that you won't have to wait for several minutes for Pyret to run fit-model to get an answer for question 4.

3) Type your definition into the Definitions Area.
4) Use fit-model to determine how closely exponential1 fits the MA-table.

$$
R^{2}=
$$

\qquad
5) Are exponential models a good fit for this data? Why or why not? \qquad
\star) Rewrite the model so it doesn't multiply by ~1 to make Pyret do these calculations with extreme precision. WARNING: be sure to save your work first, as there's a good chance this will lock up your browser and require force-quitting! Data scientists perform calculations to do things like send satellites to far-away planets, or analyze large populations of a billion or more. You know the pros of using ~ 1 involve speed. What are the potential downsides of using ~ 1 to speed up a calculation?

Exploring the Countries Dataset

For this page, you'll need the Countries of the World Starter File open on your computer. If you haven't already, select Save a Copy from the "File" menu to make a copy of the file that's just for you. The columns in this dataset are described below:

- pc-gdp - "per-capita gdp": the average GDP per-person
- country - name of the country
- gdp-total gross domestic product of the country
- population - number of people in the country
- has-univ-healthcare - indicates if the country has universal healthcare
- median-lifespan - the median life expectancy of people in the country

1) Make a scatter plot showing the relationship between $p c-g d p$ and median-lifespan. Sketch the shape of the plot below.

2) What do you Notice? \qquad
\qquad
\qquad
3) What do you Wonder? \qquad
\qquad
\qquad
4) Are there any countries that stand out? Why or why not?
\qquad
\qquad
5) Suppose a wealthy country is suffering heavy causalties in a war. Draw a star on the plot, showing where you might expect it to be.
6) Do you think you see a relationship? If so, describe it. Is it linear or nonlinear? Strong or weak?

Stop here! We'll continue after some discussion.

Fitting Models

For each question below: (1) explore in Fitting Wealth-v-Health (Desmos); (2) define and fit your model in Pyret (the starter file already contains sample functions for you to change, called linear1, quadratic1, and exponential1!). Then write the model and the R^{2}.
7) Find the best linear model you can, using the first slide in the Desmos activity or lr-plot in the Countries of the World Starter File.

$$
f(x)=\operatorname{slope}(\mathrm{m})_{\mathrm{x}}{ }^{+} \underset{y \text {-intercept }(\mathrm{b})}{ }
$$

\qquad
8) Find the best quadratic model you can, using the second slide (quadratic) in the Desmos activity.

$$
f(x)=\underbrace{}_{\text {quadratic coefficient(a) }}
$$ (x - \qquad $)^{2}+$ \qquad

\qquad
9) Find the best exponential model you can, using the third slide (exponential) in the Desmos activity.
$f(x)=$
(
$\left.{ }^{x}\right)+$
\qquad
10) Are any of these models a good fit for this data? Why or why not?

What Kind of Model?(Descriptions)

Decide whether each situation describes a quadratic, exponential, or logarithmic function.

1) The Richter Scale is measures the energy released by an earthquake. A magnitude 4 earthquake is 100 times more powerful as a magnitude 3 earthquake, which is 10 times as powerful as a magnitude 2 earthquake.
Quadratic Exponential Logarithmic
2) A car accelerates at a constant rate of $5 \mathrm{mph} / \mathrm{s}$.

Quadratic Exponential Logarithmic
3) The population of a colony of bacteria can double every 20 minutes, as long as there is enough space and food.

Quadratic Exponential Logarithmic
4) Benjamin Franklin set aside $\$ 4,400$ in a savings account for the city of Philadelphia, knowing that the account would gain interest each year. 200 years later, the account was worth $\$ 1.625$ million dollars!

> Quadratic Exponential Logarithmic
5) Moore's law says that the number of transistors in a microprocessor will double roughly every 1.5 years. How many years will it take for the number of transistors in today's processors to increase by 100x?
Quadratic Exponential Logarithmic
6) As the width of a yard increases, the area of the yard increases much faster.
Quadratic
Exponential
Logarithmic
7) What explanation would you give to someone else, to help them identify which tables show exponential growth and which show logarithmic growth? \qquad
\qquad
\qquad
\qquad

What Kind of Model? (Graphs \& Plots)

Decide whether each representation is best described by a quadratic, exponential, or logarithmic function.

What Kind of Model?(Tables)

Decide whether each representation is best described by a quadratic, exponential, or logarithmic function.
If the function is logarithmic: How much does x need to increase ($2 x$? $10 x$?) just to get a single increase in y ?

x	y		x	y	
1	0		0	1	
10	1		1	10	
100	2		2	100	
1000	3		3	100	
10000	4		4	100	
100000	5		5	100	
1000000	6		6	100	
1) Quadratic	Exponential	Logarithmic	2) Quadratic	Exponential	Logarithmic
x	y		x	y	
70	-210		2	1	
71	-169		4	2	
72	-81		8	3	
73	-34		16	4	
74	15		32	5	
75	66		64	6	
76	119		128	7	
3) Quadratic	Exponential	Logarithmic) Quadratic	Exponential	Logarithmic

\mathbf{x}	\mathbf{y}
-3	36
-2	16
-1	4
0	0
1	4
2	16
3	
Exponential	

x	y	
1	0	
6	1	
36	2	
216	3	
1296	4	
7776	5	
466656	6	
6$)$ Quadratic	Exponential	Logarithmic

Graphing Logarithmic Models

To complete this page, you'll need to open Exploring Logarithmic Functions (Desmos). The red curve is the graph of $h(x)=1 \log _{2} x+0$. It has $a=1, b=2$, and $c=0$. You can modify the curve $g(x)$ (behind h, shown in blue) by changing its a, b, and c.

Base b

Set c to zero and a to one.

1) Change the value of b to 3,5 , and 10 , graphing each curve below. In each graph, label the coordinate where $x=1$, and also where $y=1,2$, and 3.

2) How does the value of b impact a logarithmic function? \qquad
3) What connections can you draw between the value of b and exponents? \qquad

Vertical Shiftc

4) Try changing the value of c to $-10,0$, and 10, graphing each curve below. In each graph, label the coordinate where $x=1$.

5) How does the value of c impact a logarithmic function? \qquad
6) Why does $y=c$ when $x=0$?

Logarithmic Coefficient a

7) Set \boldsymbol{c} to zero and \boldsymbol{b} to ten, then zoom out so you can see as far as $x=1,000,000$

Change the value of a to 1, 2, and 3, graphing each curve below. In each graph, label the coordinates where $x=10,100$, and 1000.

8) What is the value of x when $\log _{10}(x)=6$? \qquad What about when $2 \log _{10}(x)=6$? \qquad When $3 \log _{10}(x)=6$? \qquad
\star) How are a and b related? \qquad

Changing the Scale

For this page, you'll need to load Fitting Wealth-v-Health, Part 2 (Desmos).

Fitting a Logarithmic Model

Open the Data Table folder by clicking on the triangle ($\boldsymbol{~}$)

- x_{1} is the per-capita income for each country, and y_{1} is the median lifespan.
- Next to y_{1} you'll see a dark circle with spots (\because°) inside. If the circle is dark, that means that those points are visible on our graph. Click the circle to "turn off" those dots, then click it again to turn them back on.
- Move the graph by clicking and dragging the background.
- Notice that a magnifying glass (\oplus) appears to the bottom left of the table. Clicking on the magnifying glass resizes/rescales the graph to fit all the points in the table.

Look at the numbers along the x-axis, which increase as they go from left to right.

1) What would the next number be, if you were to add one at the far right: \qquad Describe the pattern you used to find it: \qquad
2) Move the sliders for a and c to create the best-fitting logarithmic model you can find, and write it below.

3) In Pyret, modify $f(x)$ to define this model, and fit it using the $f i t-m o d e l$ function. What is your R^{2} ? \qquad

Scaling the x-Axis

Open the "Graph Settings" window in Desmos by clicking on the wrench button (\mathcal{F}) in the top-right corner of the graph.

- Expand the "More Options" section by clicking the triangle () .
- Change the x-axis scale from Linear to Logarithmic.
- Zoom out or Zoom fit by click the magnifying glass beneath the table \oplus to put all of the points back into view.

Look at the numbers along the x-axis, which increase as they go from left to right.
4) What would the next number be, if you were to add one at the far right: \qquad Describe the pattern you used to find it: \qquad
5) What is the shape of the point cloud now?

Is it linear?Quadratic? Exponential? Something else?
6) Adjust the sliders for a and c to create the best-fitting model you can find, and write it below.

$$
f(x)=\underbrace{}_{\log \operatorname{coefficient(b)}} \log _{10}(x)+\underbrace{}_{\text {vertical shift (c) }}
$$

7) In Pyret, modify $\mathrm{f}(\mathrm{x})$ to define this model, and fit it using the fit-model function. What is your $R^{2 ?}$? \qquad
8) Why did transforming the x-axis make our data look linear? \qquad

Transforming the Data

For this page, you'll need to load Fitting Wealth-v-Health, Part 2 (Desmos). open on your computer.

Transforming the Data

- Find the Wealth vs. Health folder, which is open at the top of the expression list
- This is the same table we've seen before, and the "points" circle (\because) shows us that these dots are "on" and visible.
- Underneath the Wealth vs. Health folder, you'll see a function $g(x)$ and a list y_{2} defined to be the same as y_{1}.
- Open the Log (Wealth) vs. Health folder by clicking on the triangle (D)

1) Compare the two tables. What do you Notice? \qquad
2) What do you Wonder? \qquad
3) Why is the second column of both tables the same? \qquad
4) How is the first column of this new table different from the original? \qquad

Turn the points for the first table OFF, then turn the points for our new table ON. Our log transformation is so drastic that it looks like all the black datapoints are smashed against the y-axis!
5) Rescale the graph (\odot) to see the cloud. What is the shape of this point cloud? Is it linear? Quadratic? Exponential? \qquad
6) Move the sliders for m and b to create the best-fitting linear model you can find, and write it below.

7) Why do you think transforming the x-values make our data look linear? \qquad

Transforming Axes vs. Transforming Data

8) From your linear model above, copy your values for slope (m) and vertical shift (c):
\qquad vertical shift (c)
9) Look back at the values you wrote for log coefficient (a) and vertical shift (c) on question 8 of Changing the Scale and copy them here:
log coefficient (a)
vertical shift (c)
10) Are they similar? \qquad Why or why not? \qquad
\qquad
\qquad

Logarithmic Models

Open your copy of the Countries of the World Starter File and click "Run".

Part 1

1) Find the definition of $g(r)$.What does this function do? \qquad
2) Find the Contract for build-column on the Contracts Page.

What is its Range? \qquad What is its Domain? \qquad
3) At the end of the program, you'll find this code:

```
countries-transformed = build-column(countries-table, "log(pc-gdp)", g)
```

What do you think it does? \qquad
4) Click "Run", and evaluate countries-transformed in the Interactions Area on the right to test it out!
a. What did you get back? \qquad
b. What is different about this Table? \qquad
c. Where did the column on the right come from? \qquad
d. What does that line of code at the end of the program do? \qquad
5) Use this new table to make an lr-plot comparing $\log (p c-g d p)$ and median-lifespan with country as the label.
6) Record the regression line here: $y=$ \qquad $x+$ \qquad
R^{2} : \qquad

Part 2

7) Use the values produced by lr-plot to complete the model: $\log \operatorname{arithmic}(x)=$ \qquad $\log _{10}(x)+$ \qquad
8) Let's interpret this model:

A 10x increase in per-capita-GDP is associated with median-lifespan increasing by \qquad .
9) Rewrite your model as a pyret definition: fun logarithmic(x): \qquad end
10) Add the definition to your starter file and click "Run" to load it.
11) Use fit-model to calculate the value of R^{2} : \qquad
12) Let's interpert this R^{2} value:

Roughly \qquad percent of the variation in \qquad is explained by the variation in \qquad .

Are there other relationships you can think of, which might be logarithmic?

Contracts for Algebra 2

Contracts tell us how to use a function, by telling us three important things:

1. The Name

2. The Domain of the function - what kinds of inputs do we need to give the function, and how many?
3. The Range of the function - what kind of output will the function give us back?

For example: The contract triangle : : (Number, String, String) \rightarrow Image tells us that the name of the function is triangle, it needs three inputs (a Number and two Strings), and it produces an Image.

With these three pieces of information, we know that typing triangle(20, "solid", "green") will evaluate to an Image.

These materials were developed partly through support of the National Science Foundation, (awards 1042210, 1535276, 1648684, 1738598, and 1501927), and are licensed under a Creative Commons 4.0 Unported License. Based on a work at www.BootstrapWorld.org. Permissions beyond the scope of this license may be available by contacting contact@BootstrapWorld.org.

