Name:

Student Workbook

Fall, 2022 - Wescheme Edition

Workbook v3.0

Brought to you by the Bootstrap team:

- Emmanuel Schanzer
- Kathi Fisler
- Shriram Krishnamurthi
- Dorai Sitaram
- Joe Politz
- Ben Lerner
- Flannery Denny
- Rachel Tabak

Visual Designer: Colleen Murphy

Bootstrap is licensed under a reative Commons 4.0 Unported License. Based on a work at www.BootstrapWorld.org. Permissions beyond the scope of this license may be available at contact@BootstrapWorld.org.

Computing Needs All Voices!

The pioneers pictured below are featured in our Computing Needs All Voices lesson. To learn more about them and their contributions, visit https://bit.ly/bootstrap-pioneers.

We are in the process of expanding our collection of pioneers. If there's someone else whose work inspires you, please let us know at https://bit.ly/pioneer-suggestion.

Notice and Wonder

Write down what you notice and wonder from the What Most Schools Don't Teach video.

"Notices" should be statements, not questions. What stood out to you? What do you remember? "Wonders" are questions.

What do you Notice?	What do you Wonder?

Windows and Mirrors

own identity and experience of the world. Write about who or what you connected with and why.
dentify something(s) from the film or the posters that served as a window for you, giving you insight into other people's experiences or expanding your thinking in some way.

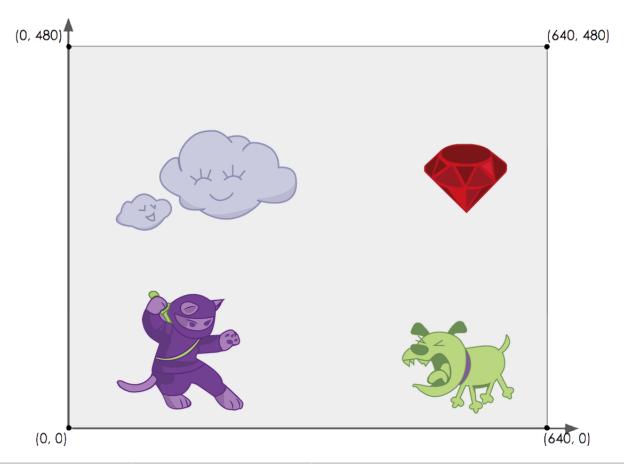
Reflection: Problem Solving Advantages of Diverse Teams

This reflection is designed to follow reading <u>LA Times Perspective</u> : A solution to tech's <u>lingering diversity problem? Try thinking about ketchup</u>
1) The author argues that tech companies with diverse teams have an advantage. Why?
2) What suggestions did the article offer for tech companies looking to diversify their teams?
3) What is one thing of interest to you in the author's bio?
4) Think of a time when you had an idea that felt out of the box. Did you share your idea? Why or why not?
5) Can you think of a time when someone else had a strategy or idea that you would never have thought of, but was interesting to you and/or pushed your thinking to a new level?
6) Based on your experience of exceptions to mainstream assumptions, propose another pair of questions that could be used in place of "Where do you keep your ketchup?" and "What would you reach for instead?".

The Math Inside video games

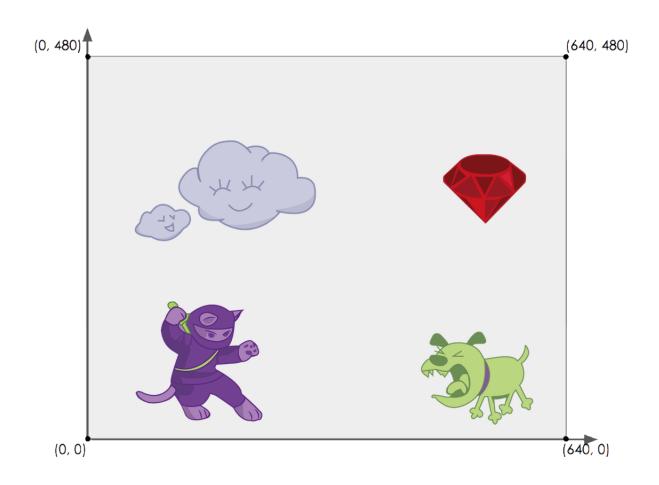
- video games are all about *change!* How fast is this character moving? How does the score change if the player collects a coin? Where on the screen should we draw a castle?
- We can break down a game into parts, and figure out which parts change and which ones stay the same. For example:
 - Computers use **coordinates** to position a character on the screen. These coordinates specify how far from the left (x-coordinate) and the bottom (y-coordinate) a character should be. Negative values can be used to "hide" a character, by positioning them somewhere off the screen.
 - When a character moves, those coordinates change by some amount. When the score goes up or down, it *also* changes by some amount.
- From the computer's point of view, the whole game is just a bunch of numbers that are changing according to some equations. We might not be able to see those equations, but we can definitely see the effect they have when a character jumps on a mushroom, flies on a dragon, or mines for rocks!
- Modern video games are *incredibly* complex, costing millions of dollars and several years to make, and relying on hundreds of programmers and digital artists to build them. But building even a simple game can give us a good idea of how the complex ones work!

Notice and Wonder


Write down what you notice and wonder about the Ninja Cat Game.

"Notices" should be statements, not questions. What stood out to you? What do you remember?

What do you Notice?	What do	you Wonder?


Reverse Engineer a video game

What is changing in the game? What variables is the program keeping track of? The first example is filled in for you.

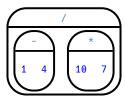
Thing in the Game	What Changes About It?	More Specifically what variable(s) are being tracked?
Dog	Position	x-coordinate

Estimating Coordinates

The coordinates for the PLAYER (NinjaCat) are: (______, _____)

The coordinates for the DANGER (Dog) are: (______,____)

Brainstorm Your Own Game


Created by:	
Background	
Our game takes place: In space? The desert? A mall?	
Player	
The Player is a	
The Player moves only up and down.	
Target	
Your Player GAINS points when they hit The Target.	
The Target is a	
The Target moves only to the left or right.	
Danger	
Your Player LOSES points when they hit The Danger.	
The Danger is a	
The Danger moves only to the left or right.	
Artwork/Sketches/Proof of Concept	
Below is a 640x480 rectangle , representing your game screen. Label the bottom-left corner as the coordinate (0,0). Then label the oth	er four
corners. Then, in the rectangle, sketch a picture of your game!	

Order of Operations

If you were to write instructions for getting ready for school, it would matter very much which instruction came first: putting on your socks, putting on your shoes, etc.

Sometimes we need multiple expressions in mathematics, and the order matters there, too! Mathematicians didn't always agree on the **Order of Operations**, but at some point it became important to develop rules to help them work together.

To help us organize our math into something we can trust, we can diagram a math expression using the **Circles of Evaluation**. For example, the expression $(1-4) \div (10 \times 7)$ can be diagrammed as shown below.

Order of Operations is important when programming, too!

To convert a **Circle of Evaluation** into Code, we walk through the circle from outside-in, moving left-to-right. We type an open parenthesis when we *start* a circle, and a close parenthesis when we *end* one. Once we're in a circle, we first write the **function** at the top, then write the inputs from left to right. The circle above, for example, would be programmed as (/(-14)).

Completing Circles of Evaluation from Arithmetic Expressions

For each expression on the left, finish the Circle of Evaluation on the right by filling in the blanks.

	Arithmetic Expression	Circle of Evaluation	
1	$4+2-\frac{10}{5}$	4 2 5	
2	$7 - 1 + 5 \times 8$	+ * * * * * * * * * * * * * * * * * * *	
3	$\frac{-15}{5+-8}$	/ + 5	
4	$(4 + (9 - 8)) \times 5$	4 9 8	
5	$6 \times 4 + \frac{96}{5}$	4 9	
*	$\frac{20}{6+4} - \frac{5 \times 9}{-12-3}$	20 + 4	

Matching Circles of Evaluation and Arithmetic Expressions

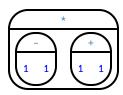
Draw a line from each Circle of Evaluation on the left to the corresponding arithmetic expression on the right.

Circle of Evaluation

Arithmetic Expression

1

Α


 $1 \div (1 \times 1)$

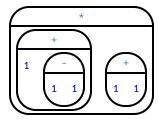
2

В

(1+1)-1

3

С


 $(1 \times 1) \div 1$

4

D

 $(1+(1-1)) \times (1+1)$

5

E

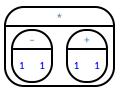
 $(1-1) \times (1+1)$

Translate Arithmetic to Circles of Evaluation & Code (Intro)

Translate each of the arithmetic expressions below into Circles of Evaluation, then translate them to Code.

	Arithmetic	Circle of Evaluation	Code
1	$(3 \times 7) - (1+2)$		
2	3 – (1 + 2)		
3	$3 - (1 + (5 \times 6))$		
4	$(1 + (5 \times 6)) - 3$		

Completing Partial Code from Circles of Evaluation


For each Circle of Evaluation on the left, finish the Code on the right by filling in the blanks.

	Circle of Evaluation	Code
1	+ 16	(+ (* 6))
2	- + 25 13 2 4	((+13) (4))
3	* 28 10 4	((+4))
4	* 13 / 7 + 2 -4	(13 (7 (2 -4)))
5	+ - - - - - - - - - - - - -	((((
6	/ + 7 9 2 4	(/ (+) (*))

Matching Circles of Evaluation & Code

Draw a line from each Circle of Evaluation on the left to the corresponding Code on the right.

Circle of Evaluation Code

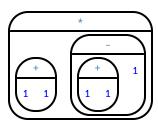
1

A (* (- 1 (+ 1 1)) 1)

2

B (* (- 1 1) (+ 1 1))

3


C (* (+ 1 1) (- (+ 1 1) 1))

4

D

(-(+11)1)

5

Е

(+ (- 1 1) 1)

$Translate\,Arithmetic\,to\,Circles\,of\,Evaluation\,\&\,Code\,2$

Translate each of the arithmetic expressions below into Circles of Evaluation, then translate them to Code.

	Arithmetic	Circle of Evaluation	Code
1	6 × 8 + (7 – 23)		
2	$18 \div 2 + 24 \times 4 - 2$		
3	$(22-7) \div (3+2)$		
4	$(24 \div 4) \times 2 - 6 + 20 \times 2$		

Arithmetic Expressions to Circles of Evaluation & Code - Challenge

ω	N	ь		Tran
$(50 \div 5) \times 2 - ((3+4) \times 2 - 5)$	$45-9 \times (3+(2-4))-7$	$\frac{16 + 3^2}{\sqrt{49} - 2}$	Arithmetic	islate each of the arithmetic expressions be
			Circle of Evaluation	Translate each of the arithmetic expressions below into Circles of Evaluation, then translate them to Code. Hint: Two useful functions are sqr and $sqrt$.
	17		Code	ulfunctions are sqr and sqrt.

Introduction to Programming

The **Editor** is a software program we use to write Code. Our Editor allows us to experiment with Code on the right-hand side, in the **Interactions Area**. For Code that we want to *keep*, we can put it on the left-hand side in the **Definitions Area**. Clicking the "Run" button causes the computer to re-read everything in the Definitions Area and erase anything that was typed into the Interactions Area.

Data Types

Programming languages involve different data types, such as Numbers, Strings, Booleans, and even Images.

- Numbers are values like 1, 0.4, 1/3, and -8261.003.
 - Numbers are usually used for quantitative data and other values are usually used as categorical data.
- Strings are values like "Emma", "Rosanna", "Jen and Ed", or even "08/28/1980".
 - All strings must be surrounded in quotation marks.
- Booleans are either true or false.

All values evaluate to themselves. The program 42 will evaluate to 42, the String "Hello" will evaluate to "Hello", and the Boolean false will evaluate to false.

Operators

Operators (like +, -, *, <, etc.) are treated the same way as functions: after all, they have inputs and outputs and obey the same rules!

Applying Functions

Applying functions (and operators!) works much the way it does in math. Every function has a name, takes some inputs, and produces some output. The function name is written first, followed by a list of *arguments*.

- In math this could look like f(5) or g(10,4).
- In WeScheme, these examples would be written as (f 5) and (g 10 4).
- Appling the operator + to the inputs 1 and 2 would look like (12).
- Applying a function to make images would look like (star 50 "solid" "red").
- There are many other functions, for example num-sqr, num-sqrt, triangle, square, string-repeat, etc.

Functions have contracts, which help explain how a function should be used. Every contract has three parts:

- The *Name* of the function literally, what it's called.
- The Domain of the function what types of values the function consumes, and in what order.
- The Range of the function what type of value the function produces.

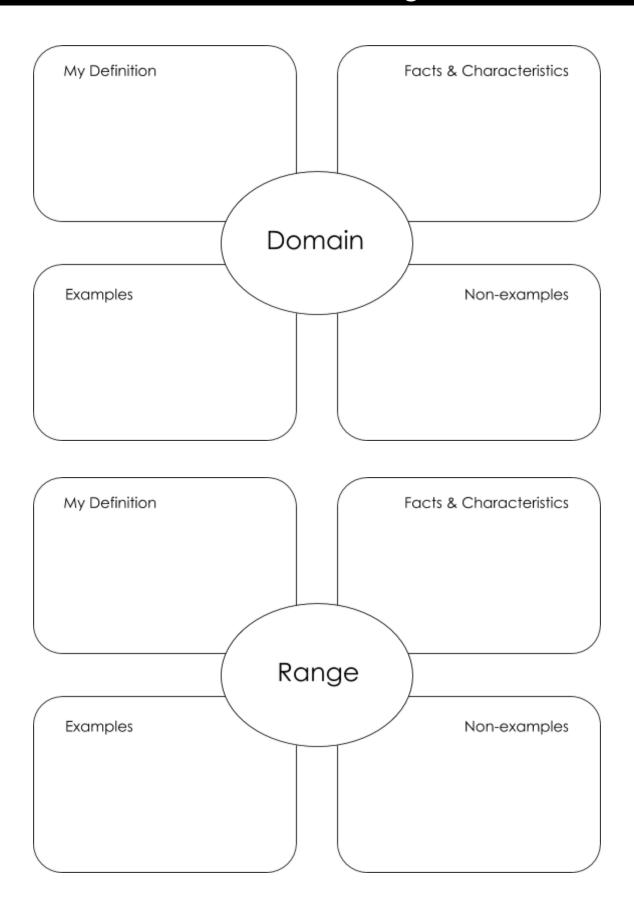
Numbers and Strings

Make sure you've loaded the WeScheme, clicked "Run", and are working in the Interactions Area.

Numbers
1) Try typing 42 into the Interactions Area and hitting "Enter". What is the largest number the editor can handle?
2) Try typing 0.5. Then try typing .5. Then try clicking on the answer. Experiment with other decimals. Explain what you understand about how decimals work in this programming language.
now decimals work in this programming language.
3) What happens if you try a fraction like 1/3 ?
4) Try writing negative integers, fractions and decimals. What do you learn?
Strings
String values are always in quotes.
5) Is 42 the same as "42" ? Why or why not? Write your answer below:
Try typing your name (in quotes!).
• Try typing a sentence like "I'm excited to learn to code!" (in quotes!).
• Try typing your name with the opening quote, but without the closing quote. Read the error message!
Now try typing your name without any quotes. Read the error message!
6) Explain what you understand about how strings work in this programming language.

Booleans

Boolean-producing expressions are yes-or-no questions and will always evaluate to either true ("yes") or false ("no"). What will each of the expressions below evaluate to? Write down your prediction in the blanks provided and then type the code into the Interactions Area to see what it returns.


	Prediction	Result			Prediction	Result
1) (<= 3 4)			2) (string>?	"a" "b")		
3) (= 3 2)			4) (string </td <td>"a" "b")</td> <td></td> <td></td>	"a" "b")		
5) (< 2 4)		_	6) (string=?	"a" "b")		
7) (>= 5 5)			8) (string<>?	"a" "a")		
9) (>= 4 6)			10) (string>=	? "a" "a")		
11) (<> 3 3)			12) (string<>	? "a" "b")		
13) In your own words,	describe what < doe	2 5.				
14) In your own words,	describe what >= do	oes.				
15) In your own words,	describe what 🤝 do	oes.				
				Prediction:		Result:
16) (string=? "a t	tree" "trees")			Prediction:		Result.
17) (string=? "tre	ee" "tree")					
18) (string-contai	ins? "catnap" "d	cat")	_			
19) (string-contains? "cat" "catnap")						
20) How many Number	s are there in the ent	ire universe?				
21) How many Strings a	are there in the entire	universe?				
22) How many Boolean	s are there in the ent	ire universe?				

Applying Functions

Type this line of code into the Interactions Area and hit "Enter":

```
(triangle 50 "solid" "red")
1) What is the name of this function?
2) What did the expression evaluate to?
3) How many arguments does triangle expect?
4) What data type does the triangle function produce?
Catching Bugs
5) (triangle 20 "solid")
     triangle: expects 3 arguments, but given 2: 20 solid at: line 1, column 0, in <interactions>
Can you spot the mistake?
6) (triangle "solid" "red" 20)
     <u>triangle</u>: expects a non-negative number as 1st argument, but given: <u>solid</u>; other arguments were:
     red 20 at: line 1, column 0, in <interactions>
Can you spot the mistake?
7) (triangle 20 40 "solid" "red")
     triangle: expects 3 arguments, but given 4: 20 40 solid red at: line 1, column 0, in
     <interactions>
Can you spot the mistake?
8) (triangle 20 solid "red")
     solid: this variable is not defined at: line 1, column 0, in <interactions>
Can you spot the mistake?
9) (triangle 20 "striped" "red")
     triangle: expects a style ("solid" / "outline") or an opacity value [0-255]) as 2nd argument,
     but given: "striped"; other arguments were: 20 "red" at: line 1, column 0, in <interactions>
Can you spot the mistake?
```

Domain and Range

Practicing Contracts: Domain & Range

Conside	er the	follo	wing	cont	ract

is-beach-weather :: Number, String -> Boolean	
1) What is the Name of this function?	
2) How many arguments are in this function's Domain ?	
3) What is the Type of this function's first argument ?	
4) What is the Type of this function's second argument ?	
5) What is the Range of this function?	

6) Circle the expression below that shows the correct application of this function, based on its contract.

```
A. (is-beach-weather 70 90)B. (is-beach-weather 80 100 "cloudy")C. (is-beach-weather "sunny" 90)D. (is-beach-weather 90 "stormy weather")
```

Consider the following contract:

```
7) What is the Name of this function?

8) How many arguments are in this function's Domain?

9) What is the Type of this function's first argument?

10) What is the Type of this function's second argument?

11) What is the Type of this function's third argument?

12) What is the Range of this function?
```

13) Circle the expression below that shows the correct application of this function, based on its contract.

```
A. (cylinder "red" 10 60)B. (cylinder 30 "green")C. (cylinder 10 25 "blue")D. (cylinder 14 "orange" 25)
```

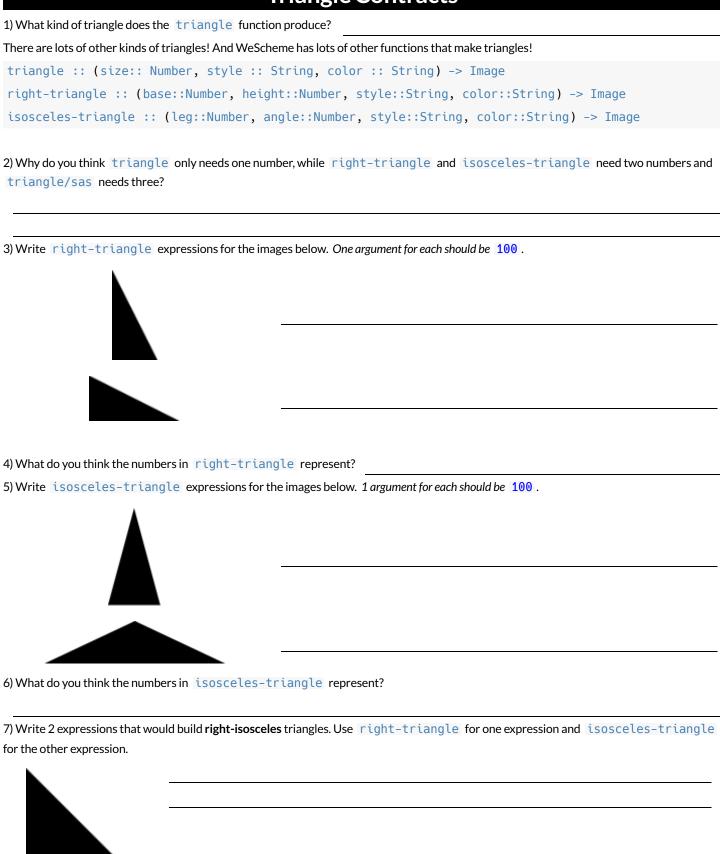
Matching Expressions and Contracts

Match the contract (left) with the expression described by the function being used (right).

Contract	Expression
<pre>; make-id :: String, Number -> Image</pre>	1 A (make-id "Savannah" "Lopez" 32)
<pre>; make-id :: String, Number, String -> Image</pre>	2 B (make-id "Pilar" 17)
<pre>; make-id :: String -> Image</pre>	3 C (make-id "Akemi" 39 "red")
<pre>; make-id :: String, String -> Image</pre>	4 D (make-id "Raïssa" "McCracken")
; make-id :: String, String, Number -> Image	5 E (make-id "von Einsiedel")

Contract		Expression
; is-capital :: String, String -> Boolean	6	A (show-pop "Juneau" "AK" 31848)
; is-capital :: String, String, String -> Boolean	7	B (show-pop "San Juan" 395426)
; show-pop :: String, Number -> Image	8	C (is-capital "Accra" "Ghana")
; show-pop :: String, String, Number -> Image	9	D (show-pop 3751351 "Oklahoma")
; show-pop :: Number, String -> Number	10	E (is-capital "Albany" "NY" "USA")

Using Contracts


ellipse :: Number, Number, String -> Image

	Use the contract to write an expression that generates a similar image:
	Use the contract to write an expression that generates a similar image:
What changes with the first Number?	
What about the shape changes with the second Number?	
Write an expression using ellipse to produce a circle.	

regular-polygon :: Number, Number, String, String -> Image

	Use the contract to write an expression that generates a similar image:
	Use the contract to write an expression that generates a similar image:
What changes with the first Number?	
What about the shape changes with the second Number?	
Use regular-polygon to write an expression for a square!	
How would you describe a regular polygon to a friend?	

ing	lacksquare	\cap	.ac	FG
шы	\Box	SU	ac	

Radial Star

```
radial-star :: (
    points :: Number,
    inner-radius :: Number,
    full-radius :: Number,
    style :: String,
    color :: String
) -> Image
```

Using the detailed contract above, match each image to the expression that describes it.

Image			Expression
*	1	А	(radial-star 5 50 200 "solid" "black")
*	2	В	(radial-star 7 100 200 "solid" "black")
	3	С	(radial-star 7 100 200 "outline" "black")
•	4	D	(radial-star 10 150 200 "solid" "black")
	5	E	(radial-star 10 20 200 "solid" "black")
*	6	F	(radial-star 100 20 200 "outline" "black")
*	7	G	(radial-star 100 100 200 "outline" "black")

What's on your mind?

Diagramming Function Composition

<pre>f :: Number -> Number Consumes a number, multiplies by 3 to produce the result</pre>	<pre>q :: Number -> Number Consumes a number, adds six to produce the result</pre>	h :: Number -> Number Consumes a number, subtracts one to produce the result
f(x) = 3x	g(x) = x + 6	h(x) = x - 1

For each function composition diagrammed below, translate it into the equivalent Circle of Evaluation for Order of Operations. Then write expressions for *both* versions of the Circles of Evaluation, and evaluate them for x = 4. The first one has been completed for you.

Function Composition	Order of Operations	Translate & Evaluate	
1) h	+ 1	Composition:	(h (g (f x)))
g	* 6 3 × 6	Operations:	(- (+ (* 3 x) 6) 1)
		Evaluate for x = 4	h(g(f(4))) = 17
2) g		Composition:	
f		Operations:	
		Evaluate for x = 4	
3) h		Composition:	
f		Operations:	
		Evaluate for x = 4	
4) f		Composition:	
h		Operations:	
		Evaluate for x = 4	

$Function\,Composition-Green\,Star$

1) Draw a Circle of Evaluation and write the Code for a solid , green states	ır, size 50.			
Circle of Evaluation:				
Code:				
Using the star described above as the original , draw the Circles of Eval	uation and write the Code for each exercise below.			
2) A solid, green star, that is triple the size of the original (using	3) A solid, green star, that is half the size of the original (using			
scale)	scale)			
4) A solid, green star of size 50 that has been rotated 45 degrees	5) A solid, green star that is 3 times the size of the original and has			
counter-clockwise	been rotated 45 degrees			

Function Composition — Your Name

You'll be investigating these functions with your partner:

```
; text :: String, Number, String -> Image
; flip-horizontal :: Image -> Image
; flip-vertical :: Image -> Image
; beside :: Image, Image -> Image
; text :: String, Number, String -> Image
; above :: Image, Image -> Image
; beside :: Image, Image -> Image
```

1) In the editor, write the code to make an image of your name in big letters in a color of your choosing using text. Then draw the Circle of Evaluation and write the Code that will create the image.

Circle of Evaluation:

Jsing the "image of your name" described above as the original , draw the Circles of Evaluation and write the Code for each exercise below.				
Test your ideas in the editor to make sure they work.				
2) The framed "image of your name".	3) The "image of your name" flipped vertically.			
4) The "image of your name" above "the image of your name" flipped vertically.	5) The "image of your name" flipped horizontally beside "the image of your name".			

$Function\,Composition-scale-xy$

You'll be investigating these two functions with your partner:

Starting with the image described above, write the Circles of Evaluation and Code for each exercise below. Be sure to test your code in the editor!

1) A purple rhombus that is stretched 4 times as wide.	2) A purple rhombus that is stretched 4 times as tall
2) The tell shearshoo from #4 and a shear side shearshoo (#2)	A Country and the appropriate the lest improve your add in #2
3) The tall rhombus from #1 overlayed on the wide rhombus (#2).	★ Overlay a red rhombus onto the last image you made in #3.

More than one way to Compose an Image!

What image will each of the four expressions below evaluate to? If you're not sure, type them into the Interactions Area and see if you can figure out how the code constructs its image.

```
(beside (rectangle 200 100 "solid" "black")(square 100 "solid" "black"))
                                                                                                                                                                                       (scale 2 (rectangle 100 100 "solid" "black"))
                                                                                                                                                                                                                                                  (scale/xy 1 2(square 100 "solid" "black"))
                                                                  (rectangle 100 50 "solid" "black") (above
(rectangle 200 100 "solid" "black")
(rectangle 100 50 "solid" "black")))
```

For each image below, identify 2 expressions that could be used to compose it. The bank of expressions at the top of the page includes one possible option for each image.

*	ω	2	н_
			33

Defining Values

In math, we use **values** like -98.1, 2/3 and 42. In math, we also use **expressions** like $1 \times 3, \sqrt{16}$, and 5 - 2. These evaluate to results, and typing any of them in as code produces some answer.

Math also has **definitions**. These are different from values and expressions, because *they do not produce results*. Instead, they simply create names for values, so that those names can be re-used to make the Math simpler and more efficient.

Definitions always have both a name and an expression. The name goes on the left and the value-producing expression goes on the right, separated by an equals sign:

```
x = 4y = 9 + x
```

The name is defined to be the result of evaluating the expression. Using the above examples, we get "x is defined to be 4, and y is defined to be 13". **Important: there is no "answer" to a definition**, and typing in a definition as code will produce no result.

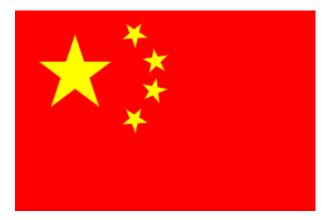
Notice that definitions can refer to previous definitions. In the example above, the definition of y refers to x. But x, on the other hand, cannot refer to y. Once a value has been defined, it can be used in later expressions.

In WeScheme, these definitions are written a little differently, making it clear that we're talking about definitions:

Try typing these definitions into the Definitions Area on the left, clicking "Run", and then using them in the Interactions Area on the right.

```
(define x 4)
(define y (+ 9 x))
```

Just like in math, definitions in our programming language can only refer to previously-defined values.


Here are a few more value definitions. Feel free to type them in, and make sure you understand them.

```
(define x (+ 5 1))
(define y (* x 7))
(define food "Pizza!")
(define dot (circle y "solid" "red"))
```

Defining Values - Explore

Open the <u>Defining Values Starter File</u> and click "Run".
1) What do you Notice?
2) What do you Wonder?
Look at the expressions listed below. Think about what you expect each of them to produce. Then, test them out one at a time in the
Interactions Area.
• X
• (+ x 5)
• (- y 9)
• (* x y)
• Z
• t
• gold-star
• my-name
• swamp
• 5pi
3) What have you learned about defining values?
4) Define at least 2 more variables in the Definitions Area, click "Run" and test them out. Once you know they're working, record the code you used below.

Defining Values - Chinese Flag

1) What image do you see repeated in the flag?

2) In the code below, highlight or circle all instances of the expression that makes the repeated image.

3) Write the code to define a value for the repeated expression.

4) Open the Chinese Flag Starter File and click "Run".

- Type china into the Interactions Area and click Enter.
- Save a copy of the file, and simplify the flag code using the value you defined.
- Click "Run", and confirm that you still get the same image as the original.
- Now change the color of all of the stars to black, in both files.
- Then change the size of the stars.

5) Why is it helpful to define values for repeated images?

Challenge:

- This file uses a function we haven't seen before! What is it?
- Can you figure out its contract? Hint: Focus on the last instance of the function.

Why Define Values?

- 1) Complete the table using the first row as an example.

Code: (overlay (text "sun" 30 "black") (radial-star 30 20 50 "solid" "yellow"))	text radial-star "sun" 30 "black" 30 20 50 "solid" "yellow"	Code: (frame (radial-star 30 20 50 "solid" "yellow"))	radial-star 30 20 50 "solid" "yellow"	Code: (scale 3 (radial-star 30 20 50 "solid" "yellow"))	scale radial-star 30 20 50 "solid" "yellow"	Original Circle of Evaluation & Code
\downarrow	\downarrow	↓	↓	↓	↓	\
Code:		Code:	37	Code: (scale 3 sunny)	scale 3 sunny	Use the defined value sunny to simplify!

3) Test your code in the editor and make sure it produces what you would expect it to.

Which Value(s) Would it Make Sense to Define?

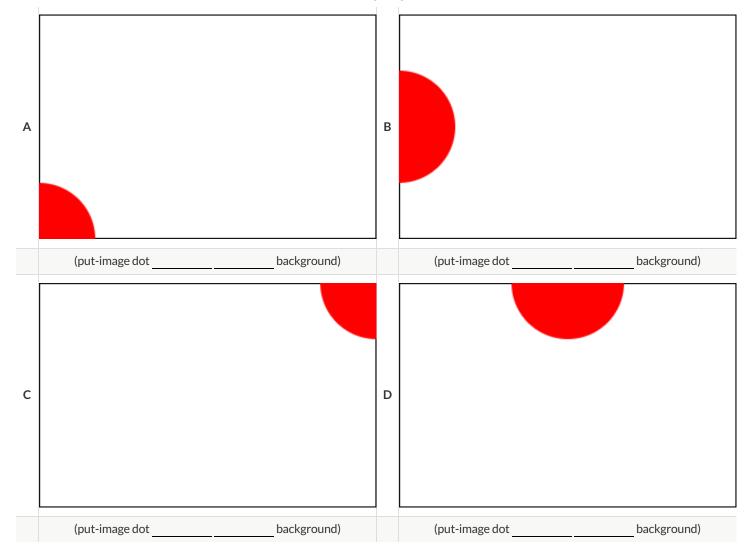
For each of the images below, identify which element(s) you would want to define before writing code to compose the image.

Hint: what gets repeated?

Writing Code using Defined Values

1) On the line below, write the Code to define PRIZE-STAR as a pink, outline star of size 65.

Using the PRIZE-STAR definition from above, draw the Circle of Evaluation and write the Code for each of the exercises. One Circle of Evaluation has been done for you.


2) The outline of a pink star that is three times the size of the original (using scale) Circle of Evaluation: scale 3 PRIZE-STAR	3) The outline of a pink star that is half the size of the original (using scale) Circle of Evaluation:
Code:	Code:
4) The outline of a pink star that is rotated 45 degrees (It should be the same size as the original.) Circle of Evaluation:	5) The outline of a pink star that is three times as big as the original and has been rotated 45 degrees Circle of Evaluation:
Code:	Code:
6) How does defining values help you as a programmer?	

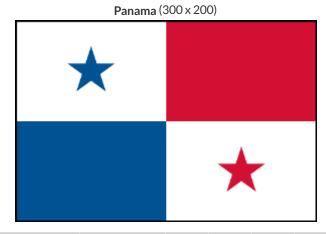
Estimating Coordinates

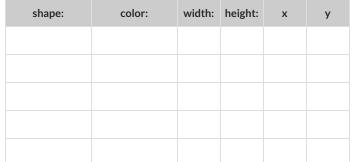
```
(define dot (circle 50 "solid" "red"))
(define background (rectangle 300 200 "outline" "black"))
```

Think of the background image as a sheet of graph paper with the origin (0,0) in the bottom left corner. The width of the rectangle is 300 and the height is 200. The numbers in put-image specify a point on that graph paper, where the center of the top image (in this case dot) should be placed.

Estimate: What coordinates for the dot created each of the following images?

Decomposing Flags


Each of the flags below is shown with their width and height. Identify the shapes that make up each flag. Use the flag's dimensions to estimate the dimensions of the different shapes. Then estimate the x and y coordinates for the point at which the center of each shape should be located on the flag. Hint: The bottom left corner of each flag is at (0,0) and the top right corner is given by the flags dimensions.



shape:	color:	width:	height:	x	у

shape:	color:	width:	height:	х	У

shape:	color:	width:	height:	х	У

Notice and Wonder

As you investigate the Blank Game Starter File with your partner, record what you Notice, and then what you Wonder.

Remember, "Notices" are statements, not questions.

The Great gt domain debate!

Kermit: The domain or gt is Number, String, String.
Oscar: The domain of gt is Number.
Ernie: I'm not sure who's right!
In order to make a triangle, we need a size, a color and a fill style
but all we had to tell our actor was $(gt\ 20)$ and they returned $(triangle\ 20\ "solid"\ "green")$.
Please help us!
1) What is the correct domain for gt?
2) What could you tell Ernie to help him understand how you know?

Let's Define Some New Functions!

1) Let's define a function rs to generate solid red squares of whatever size we give them!

If I say (rs 5), what would our actor need to say?					
Let's write a few more examples:					
(rs) →					
$(rs) \rightarrow$					
(rs)→					
What changes in these examples? Name your variable(s):					
Let's define our function using the variable.					
(define (rs))				
2) Let's define a function bigc to generate big solid circles of size 100 in whatever color we give them! If I say (bigc "orange"), what would our actor need to say?					
Let's write a few more examples:					
(bigc) →					
(bigc) →					
(bigc) →					
What changes in these examples? Name your variable(s):					
Let's define our function using the variable.					
(define (bigc)					
3) Let's define a function ps to build a pink star of size 50, with the input determining whether it's solid or outline! If I say (ps "outline"), what would our actor need to say?					
Write examples for all other possible inputs:					
(ps) →					
(ps) →					
What changes in these examples? Name your variable(s):					
Let's define our function using the variable.					
(define (ps))				

44

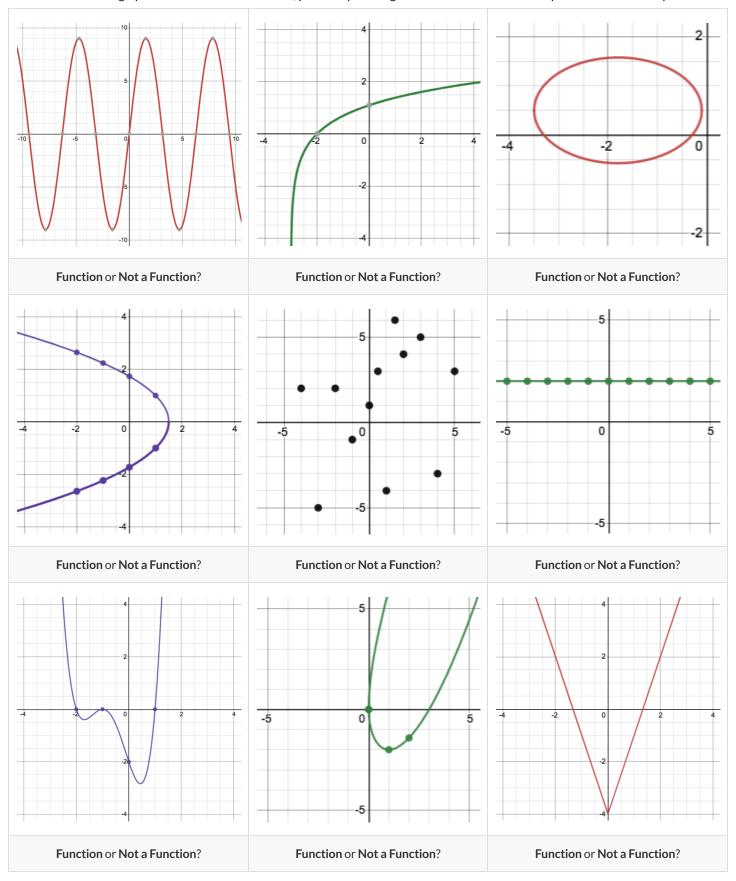
Add these new function definitions to your $\operatorname{\operatorname{\underline{gt}}}$ $\operatorname{\underline{Starter}}$ $\operatorname{\underline{File}}$ and test them out!

Let's Define Some More New Functions!

1) Let's define a function sun to write SUNSHINE in whatever color and size we give it!

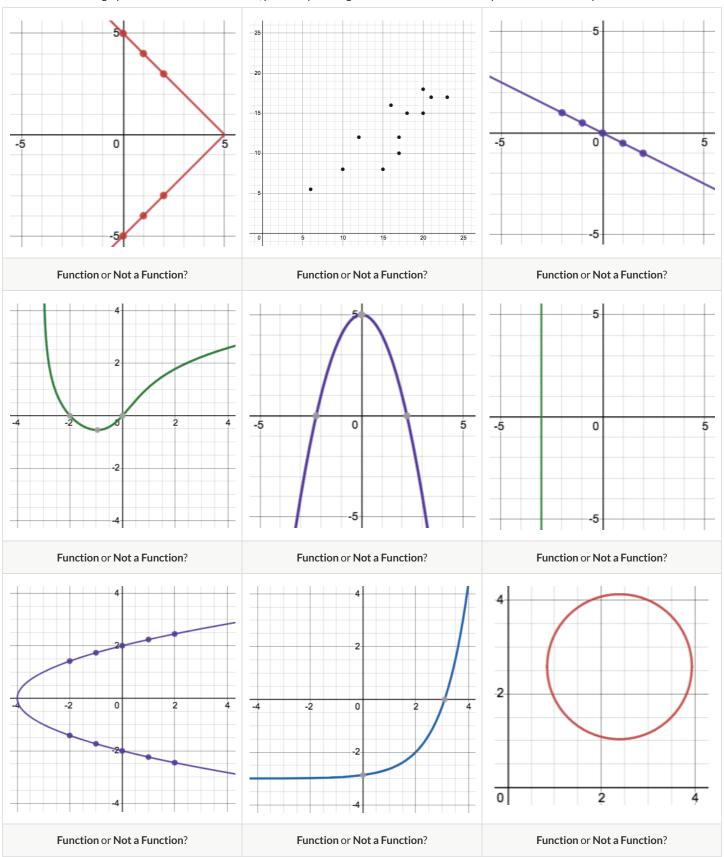
If I say (sun	5 "blue"), what would our ac	or need to say?	
Let's write a fe	ew more examples:		
(sun	$) \rightarrow$		
(sun	$) \rightarrow$		
(sun) →		
What changes	s in these examples? Name your va	riable(c)·	
	ur function using the variable.	Table(3).	
(define (sun))
0)1 11 1 6			
	-	name in whatever size and color we give it!	
If I say (me 1	18 "gold"), what would our ac	or need to say?	
Let's write a fe	ew more examples:		
(me) ->		
(me) →		
(me) →		
What changes	s in these examples? Name your va	riable(s):	
Let's define ou	ur function using the variable.		
(define (me))
3) Let's define	e a function <code>gr</code> to build a solid, <code>g</code>	reen rectangle of whatever length and width we give it!	
IfIsay (gr 1	L0 80), what would our actor ne	ed to say?	
Let's write a fe	ew more examples:		
(gr) → (rectangle	"solid" "green")	
(gr) → (rectangle	"solid" "green")	
(gr	$) \rightarrow (rectangle$	"solid" "green")	
What changes	s in these examples? Name your va	riable(s):	
Let's define ou	ur function using the variable.		
(define (gr))

Describe and Define Your Own Functions!


1) Let's define a function	to generate		
If I say , what wo	uld our actor need to say?		
Let's write a few more examples:			
$(\underline{\hspace{1cm}}) \rightarrow (\underline{\hspace{1cm}}$)	
$(\hspace{1cm}) \rightarrow (\hspace{1cm}$)	
)	
		/	
What variable changes?			
Let's define our function using the varial	ole.		
fun () :) end
2) Let's define a function	to generate		
If I say , what wo	uld our actor need to say?		
Let's write a few more examples:			
$(\hspace{1cm}) \rightarrow (\hspace{1cm}$)	
()→(-)	
		,	
	·		
What variable changes?			
Let's define our function using the varial	ole.		
fun ():) end
	-		
3) Let's define a function	to generate		
If I say , what wo	uld our actor need to say?		
Let's write a few more examples:			_
$(\underline{\hspace{1cm}}) \rightarrow (\underline{\hspace{1cm}}$)	
$(\hspace{1cm}) \rightarrow (\hspace{1cm}$)	
$(\qquad) \rightarrow ($)	
What variable changes?			
Let's define our function using the varial	ole.		
fun () :	() end

Add your new function definitions to your <u>gt Starter File</u> and test them out!

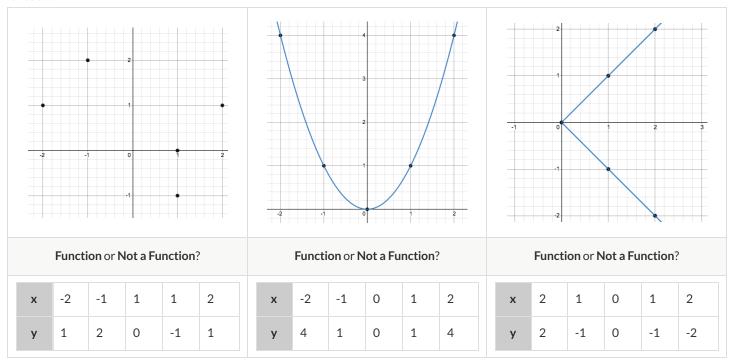
What's on your mind?


Identifying Functions from Graphs

Decide whether each graph below is a function. If it's not, prove it by drawing a vertical line that crosses the plot at more than one point.

Identifying Functions from Graphs (continued)

Decide whether each graph below is a function. If it's not, prove it by drawing a vertical line that crosses the plot at more than one point.


Notice and Wonder - Functions

Write down what you Notice and Wonder about the graphs you've just seen. (At a future point you will also use this page to record what you notice and wonder about the tables you'll see). Remember: "Notices" should be statements, not questions.

What do you Notice?	What do you Wonder?

How Tables Fail the Vertical Line Test

1) Each of the graphs below is also represented by a table. Use the vertical line test to determine whether or not each graph represents a function.

- 2) For each graph that failed the vertical line test, label the offending points with their coordinates.
- 3) Find the same coordinates in the table below the graph and circle or highlight them.
- 4) What do the tables of the non-functions have in common? What could you look for in other tables to identify whether or not they could represent a function?

5) Use the process you just described to determine whether each table below could represent a function. Circle or highlight the points that would end up on the same vertical line.

x	У
0	-2
1	-2
2	-2
3	-2
4	-2

×	У
0	-2
1	1
2	4
3	7
3	10

x	У
0	3
1	4
-1	5
2	6
-2	7

×	У	
1	0	
0	1	
1	2	
2	3	
3	4	

Function or Not?

Function or Not?

Function or Not?

Function or Not?

Identifying Functions from Tables

Decide whether or not each table below could represent a function. If not, circle what you see that tells you it's not a function. In a function, there is exactly one y-value (or output) for each x-value (or input). If a table has more than one y-value (or output) for the same x-value (or input), it can not represent a function.

x	У
0	3
1	2
2	5
3	6
4	5

x	У
5	3
1	4
-3	5
3	6
2	7

input	output
0	2
5	2
2	2
6	2
3	2

x	У
1	0
1	1
1	2
1	3
1	4

Function or Not?

Function or Not?

Function or Not?

Function or Not?

tickets	\$
2	0
1	2
2	4
3	6
4	8

input	output
-4	-2
-3	-1
-2	0
-1	1
0	2

×	У
10	9
3	2
9	8
17	16
3	5

С	F
-40	-40
0	32
10	50
37	98.6
100	212

Function or Not?

Function or Not?

Function or Not?

Function or Not?

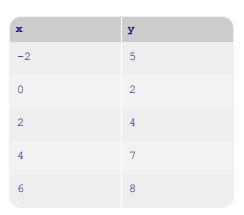
input	output
0	7
-1	2
4	3
8	6
-5	-8

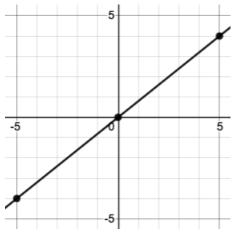
\$	games
10	5
11	25
12	45
13	65
14	85

x	У
8	10
6	5
4	0
6	-5
8	-10

miles	minutes
0	0
1	2
2	4
3	6
4	8

Function or Not?

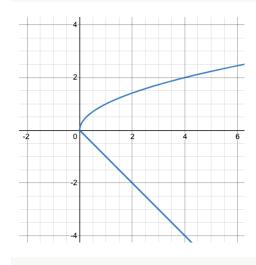

Function or Not?


Function or Not?

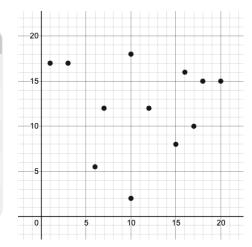
Function or Not?

Identifying Functions from Tables & Graphs

Decide whether or not each table or graph below could represent a function. If not, circle what tells you it's not a function. In a function, there is exactly one y-value for each x-value. If a table has more than one y-value for the same x-value, it can not represent a function.



x	У	
0	7	
1	2	
1	3	
2	6	
3	-8	


Function or Not a Function?

Function or Not a Function?

Function or Not a Function?

×	У
-1.5	-2
-1	-1
-0.5	0
0	1
0.5	2



Function or Not a Function?

Function or Not a Function?

Function or Not a Function?

ж	У
-1	1.5
0	1.5
1	1.5
2	1.5
3	1.5

ж	У
8	1
5	2
4	3
5	4
8	5

Function or Not a Function?

Function or Not a Function?

Function or Not a Function?

Matching Examples and Definitions (Math)

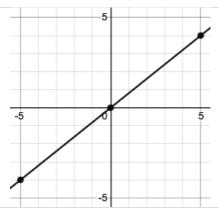
Match each of the function definitions on the left with the corresponding table on the right.

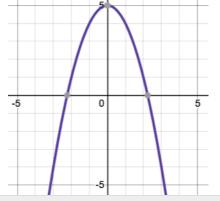
It may help to circle or highlight what's changing in the f(x) column of the table!

Function Definitions			Example Tables	
			x	f(x)
			1	2 × 1
f(x) = x - 2	1	А	2	2 × 2
			3	2 × 3
			x	f(x)
			15	15 – 2
f(x) = 2x	2	В	25	25 – 2
			35	35 – 2
			x	f(x)
			10	2 + 10
f(x) = 2x + 1	3	С	15	2 + 15
			20	2 + 20
			x	f(x)
			0	1 - 2(0)
f(x) = 1 - 2x	4	D	1	1 – 2(1)
			2	1 – 2(2)
	5		x	f(x)
			10	2(10) + 1
f(x) = 2 + x		Е	20	2(20) + 1
			30	2(30) + 1

Function Notation - Substitution

Complete the table below, by substituting the given value into the expression and evaluating.

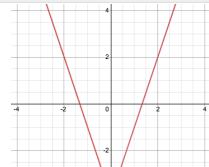

Function Definition	Expression	Substitution	Evaluates to
f(x) = x + 2	f(3)	3+2	5
g(x) = x - 1	g(6)		
h(x) = 3x	h(4)		
k(x) = 2x - 1	k(5)		


Now that you understand how to evaluate an expression, let's get some more practice! The table below includes four different functions. Beneath each of them are a collection of different expressions to evaluate.

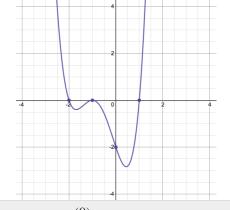
Beneath each of them are a collection of different expressions to evaluate.			
m(x) = -2x + 3	n(x) = -x + 7	v(x) = 10x - 8	$w(x) = x^2$
m(3) = -2(3) + 3	n(5) =	<i>v</i> (7) =	w(-2) =
-3			
<i>m</i> (-4) =	<i>n</i> (-2) =	<i>v</i> (0) =	<i>w</i> (10) =
m(0) =	<i>n</i> (3.5) =	v(-10) =	<i>w</i> (0) =
m(0.5) =	<i>n</i> (0) =	v(2.5) =	w(1.5) =
What do y	ou Notice?	What do yo	ou Wonder?

Function Notation - Graphs

Find the values described by the expressions below each graph.

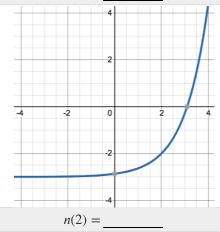

$$f(-5) =$$

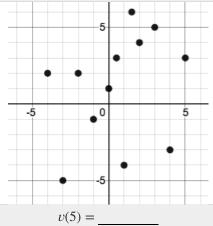
$$g(-2) =$$

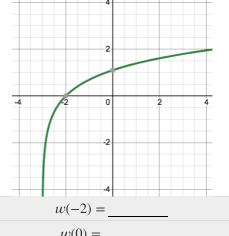

$$h(0) =$$

$$g(0) =$$

$$h(1) =$$


$$j(-2) =$$


$$k(3) =$$


$$m(0) =$$

$$j(0) =$$

$$k(-2.5) =$$

$$n(-\infty) =$$

$$w(0) =$$

Function Notation - Tables

Find the values described by the expressions below each table.

Note: not all of the relationships here are actually functions!

x	f(x)
0	0
1	2
2	4
3	6
4	8

x	g(x)
5	3
1	4
-3	5
3	6
2	7

$$x$$
 $h(x)$

 0
 2

 5
 2

 2
 2

 6
 2

 3
 2

$$\begin{array}{c|cccc}
x & y(x) \\
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4
\end{array}$$

$$g(1) = _{\underline{\hspace{1cm}}}$$

$$h(0) =$$

$$y(1) = 0? 1? 2? 3?$$

 $y(2) = 4?$

$$f(4) =$$

$$g(3) =$$

$$h(3) =$$

$$y(8) =$$

a	b(a)
-4	-2
-3	-1
-2	0
-1	1
0	2

$$b(-1) =$$

$$d(2) =$$

$$m(0) = \underline{\hspace{1cm}}$$

$$p(1) =$$

$$b(0) = _{\underline{\hspace{1cm}}}$$

$$d(4) =$$

$$m(-3) =$$

$$p(2) =$$

S	r(s)
0	7
-1	2
4	3
8	6
-5	-8

$$r(-1) =$$

$$z(6) = \underline{\hspace{1cm}}$$

$$z(2) = \underline{\hspace{1cm}}$$

$$l(10) =$$

$$r(8) =$$

$$v(14) =$$

Defining Functions

Functions can be viewed in *multiple representations*. You already know one of them: *Contracts*, which specify the Name, Domain, and Range of a function. Contracts are a way of thinking of functions as a *mapping* between one set of data and another. For example, a mapping from Numbers to Strings:

```
f :: Number -> String
```

Another way to view functions is with *Examples*. Examples are essentially input-output tables, showing what the function would do for a specific input:

In our programming language, we focus on the last two columns and write them as code:

```
(EXAMPLE (f 1) (+ 1 2))

(EXAMPLE (f 2) (+ 2 2))

(EXAMPLE (f 3) (+ 3 2))

(EXAMPLE (f 4) (+ 4 2))
```

Finally, we write a formal **function definition** ourselves. The pattern in the Examples becomes *abstract* (or "general"), replacing the inputs with *variables*. In the example below, the same definition is written in both math and code:

```
f(x) = x + 2
(define (f x) (+ x 2))
```

Look for connections between these three representations!

- The function name is always the same, whether looking at the Contract, Examples, or Definition.
- The number of inputs in the Examples is always the same as the number of types in the Domain, which is always the same as the number of variables in the Definition.
- The "what the function does" pattern in the Examples is almost the same in the Definition, but with specific inputs replaced by variables.

Matching Examples and Contracts

 $\label{eq:match} \textbf{Match each set of examples (left) with the contract that best describes it (right).}$

; f :: String, Number -> Image	m	U i	<pre>(EXAMPLE (f 5 "outline") (star 5 "outline" "yellow")) (EXAMPLE (f 5 "solid") (star 5 "solid" "yellow"))</pre>
; f :: Number, String -> Image 9	D	4	(EXAMPLE (f "Hi!") (text "Hi!" 50 "red")) (EXAMPLE (f "Ciao!") (text "Ciao!" 50 "red"))
; f :: Number -> Image	O	ω	<pre>(EXAMPLE (f "pink" 5) (star 5 "solid" "pink")) (EXAMPLE (f "blue" 8) (star 8 "solid" "blue"))</pre>
; f :: String -> Image	В	٧	<pre>(EXAMPLE (f 1) (rectangle 1 1 "outline" "red")) (EXAMPLE (f 6) (rectangle 6 6 "outline" "red"))</pre>
; f :: Number -> Number	Þ	ь	(EXAMPLE (f 5) (/ 5 2)) (EXAMPLE (f 9) (/ 9 2)) (EXAMPLE (f 24) (/ 24 2))
Contract			Examples

Matching Examples and Function Definitions

Highlight the variables in gt and label them with the word "size".

```
(EXAMPLE (gt 20) (triangle 20 "solid" "green"))
(EXAMPLE (gt 50) (triangle 50 "solid" "green"))
(define (gt size) (gt size "solid" "green"))
```

Highlight and label the variables in the example lists below. Then, using gt as a model, match the examples to their corresponding function definitions.

Examples			Definition
<pre>(EXAMPLE (f "solid") (circle 8 "solid" "red")) (EXAMPLE (f "outline") (circle 8 "outline" "red"))</pre>	1	А	(define (f s) (star s "outline" "red"))
(EXAMPLE (f 2) (+ 2 2)) (EXAMPLE (f 4) (+ 4 4)) (EXAMPLE (f 5) (+ 5 5))	2	В	(define (f num) (+ num num))
(EXAMPLE (f "red") (circle 7 "solid" "red")) (EXAMPLE (f "teal") (circle 7 "solid" "teal"))	3	С	(define (f c) (star 9 "solid" c))
(EXAMPLE (f "red") (star 9 "solid" "red")) (EXAMPLE (f "grey") (star 9 "solid" "grey")) (EXAMPLE (f "pink") (star 9 "solid" "pink"))	4	D	(define (f s) (circle 8 s "red"))
(EXAMPLE (f 3) (star 3 "outline" "red")) (EXAMPLE (f 8) (star 8 "outline" "red"))	- 5 -	E	<pre>(define (f c) (circle 7 "solid" c))</pre>

Creating Contracts From Examples

Write the contracts used to create each of the following collections of examples.

```
1)

(EXAMPLE (big-triangle 100 "red")
(triangle 100 "solid" "red"))
(EXAMPLE (big-triangle 200 "orange")
(triangle 200 "solid" "orange"))

2)

(EXAMPLE (purple-square 15)
    (rectangle 15 15 "outline" "purple"))
(EXAMPLE (purple-square 6 6 "outline" "purple"))

3)

(EXAMPLE (banner "Game Today!")
    (text "Game Today!" 50 "red"))
(EXAMPLE (banner "Go Team!")
    (text "Game Today!" 50 "red"))
(EXAMPLE (banner "S0 "red"))
(EXAMPLE (banner "so "red"))
(EXAMPLE (banner "sti")
    (text "Exit" 50 "red"))

4)

(EXAMPLE (twinkle "outline" "red")
    (star 5 "outline" "red"))
(EXAMPLE (twinkle "solid" "pink")
    (star 5 "solid" "pink"))
(EXAMPLE (twinkle "outline" "grey")

5)

(EXAMPLE (half 5) (/ 5 2))
(EXAMPLE (half 5) (/ 8 2))
(EXAMPLE (half 8) (/ 8 2))
(EXAMPLE (half 90) (/ 900 2))
```

Contracts, Examples & Definitions - bc

gt									
Directions: [Define a function cal	led gt, which makes	solid gr	een triangles of wha	atever size w	e want.			
Every contrac	ct has three parts								
• gt	:			Number			->	Image	
function name				Domain				Range	
Write some e	xamples, then circle a	nd label what change	S						
(EXAMPLE	(gt	10)	(triangle 10	"solid"	"green"))
	function name	input(s)	,		V	vhat the function produces			
(EXAMPLE	(gt	20)	(triangle 20	"solid"	"green")		ļ)
	function name	input(s)			٧	what the function produces			
Write the def	inition, giving variabl	e names to all your inp	out valu	ies					
(define (gt				size))
	function name				variable(s)				
(triang	le size "soli	d" "green")						,)
bc									
Directions: [Define a function cal	led bc, which makes s	solid bl	ue circles of whatev	er radius we	want.			
Every contrac	ct has three parts								
•	:						->		
funct	ion name			Domain				Range	-
Write some e	xamples, then circle a	nd label what change:	5						
(EXAMPLE	()				•)
	function nan	ne	input(s)			what the function produces			
(EXAMPLE	()))
	function nan	ne	input(s)			what the function produces			
Write the def	inition, giving variabl	e names to all your inp	out valu	ies					
(define (•)
	function name				variable	e(s)			

what the function does with those variable(s)

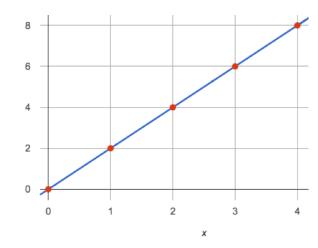
Contracts, Examples & Definitions - Stars

sticker Directions: Define a function called sticker, which consumes a color and draws a 50px star of the given color. Every contract has three parts... function name Domain Range Write some examples, then circle and label what changes... (EXAMPLE (function name what the function produces (EXAMPLE function name what the function produces Write the definition, giving variable names to all your input values... function name variable(s) what the function does with those variable(s) gold-star Directions: Define a function called gold-star, which takes in a number and draws a solid gold star of that given size. Every contract has three parts... function name Domain Range Write some examples, then circle and label what changes... (EXAMPLE (function name input(s) what the function produces (EXAMPLE (function name what the function produces Write the definition, giving variable names to all your input values... (define (function name variable(s)

what the function does with those variable(s)

Contracts, Examples & Definitions - Name

name-co	olor						
Directions:	Define	a function called name-	color, which makes a	n image of your	name at size 50 in whateve	er color is given.	
Every contra	ict has t	hree parts					
•		:				->	
func	ction name			Domain			Range
Write some	example	es, then circle and label wh	at changes				
(EXAMPLE	()			
		function name	input(s)	 '	what the function	on produces	
(EXAMPLE	()			
		function name	input(s)		what the function	on produces	
Write the de	finition	, giving variable names to a	all your input values				
(define ((
		function name			variable(s)		
name-si	ze						
Directions:	Define	a function called name-	size, which makes an	image of your n	ame in your favorite color (be sure to specify yo	our name
and favorite	color!)	in whatever size is given.					
Every contra	ıct has t	hree parts					
•						->	
9 fund	ction name	<u> </u>		Domain			Range
Write some	example	es, then circle and label wh	at changes				
(EXAMPLE	(•	· ·)			
		function name	input(s)		what the function	on produces	
(EXAMPLE	()			
		function name	input(s)		what the function	on produces	
Write the de	finition	, giving variable names to a	all your input values				
(define ((
		function name			variable(s)		


what the function does with those variable(s)

What's on your mind?

Notice and Wonder (Linearity)

Part 1:

ж	У
0	0
1	2
2	4
3	6
4	8

What do you Notice?	What do you Wonder?

Part 2:

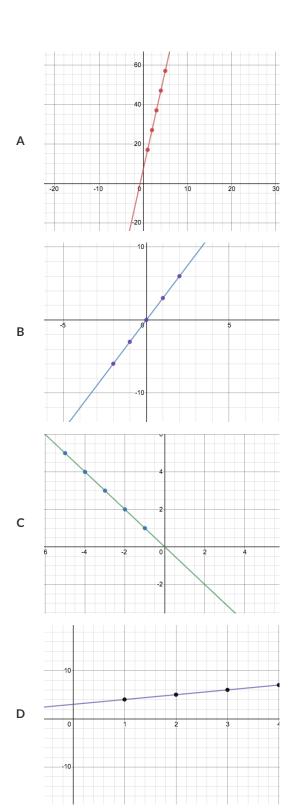
- What would be the next (x,y) pair for each of the tables?
- What would the y-value for each table be when x is 0?

x	У
0	
1	2
2	3
3	4
4	5
5	6

x	У
0	
1	20
2	17
3	14
4	11
5	8

Matching Tables to Graphs

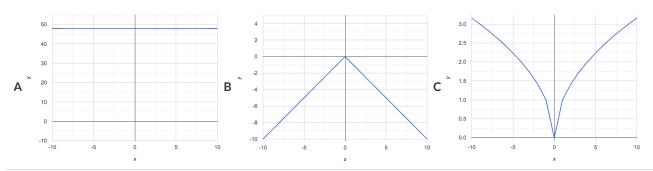
For each of the tables below, find the graph that matches.

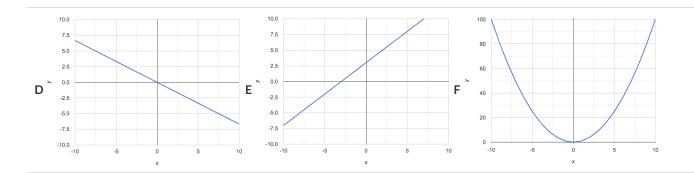

Note: Scales on the graphs vary. The tables are shown sideways to save space.

х	1	2	3	4	5
У	4	5	6	7	8

х	-5	-4	-3	-2	-1
У	5	4	3	2	1

x	1	2	3	4	5
у	17	27	37	47	57


х	-2	-1	0	1	2
У	-6	-3	0	3	6



Are All Graphs Linear?

If all linear relationships can be shown as points on a graph, does that mean all graphs are linear?

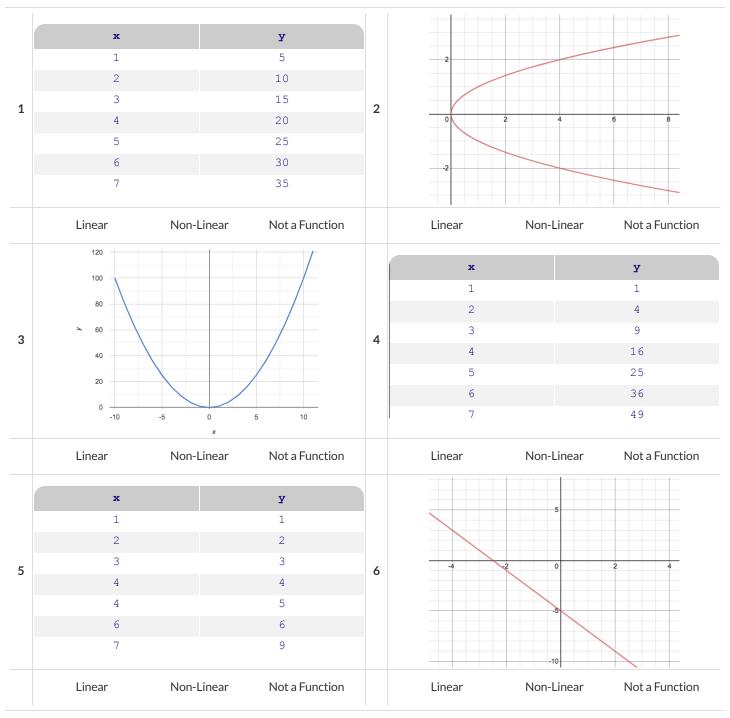
Beneath each graph write **linear** or **not linear**.

What do you Notice?	What do you Wonder?

Are All Tables Linear?

If all linear relationships can be shown as tables, does that mean all tables are linear? Look at the six tables shown below.

- 1) Extend as many of the tables as you can by adding the next (x,y) pair in the sequence.
- 2) If the table is linear, write down your prediction of what the y-value will be when x = 0.
- 3) If the table is not linear, write **not linear** instead of the y-intercept.


4						В							
х	-2	-1	0	1	2	>	<	2	3	4	5	6	
у	-2	-3	-4	-5	-6	Y	/	-12	-14	-16	-18	-20	
when x=0), y will equ	ıal				wher	n x=0,	y will equ	ıal				
2						D							
х	1	2	3	4	5	>	<	5	6	7	8	9	
у	1	4	9	16	25	Y	/	3	3	3	3	3	
when x=0), y will equ	ıal				wher	1 x=0,	y will equ	ıal				
E						F							
х	1	2	3	4	5	>	<	-10	-9	-8	-7	-6	
у	84	94	104	114	124	Y	/	$\frac{-1}{10}$	$\frac{-1}{9}$	$\frac{-1}{8}$	$\frac{-1}{7}$	$\frac{-1}{6}$	
when x=0, y will equal				wher	1 x=0,	y will equ	ıal		•				

What do you Notice?	What do you Wonder?

Linear, Non-linear, or Bust?

Decide whether each representation is of a linear function, a non-linear function or is not a function at all!

Remember: Functions will pass the Vertical Line Test!

Slope & y-Intercept from Tables (Intro)

slope (rate): how much y changes as x-increases by 1

y-intercept: the y-value when x = 0

х	-1	0	1	2	3	4
у	-1	1	3	5	7	9

4١	Compute the	. ا م م م ا
T)	Compute the	siope:

- 2) Compute the y-intercept:
- 3) What strategies did you use to compute the slope and y-intercept?

The slope and y-intercept in this table are harder to find, because the x-values don't go up by 1 and we can't see a value for x = 0. Try filling in the points that have been skipped to Compute the slope and y-intercept.

x	2	5	8	11
У	3	9	15	21

- 4) Compute the slope: 2
- 5) Compute the y-intercept:

The slope and y-intercept in this table are even harder to find, because the x-values are out of order!

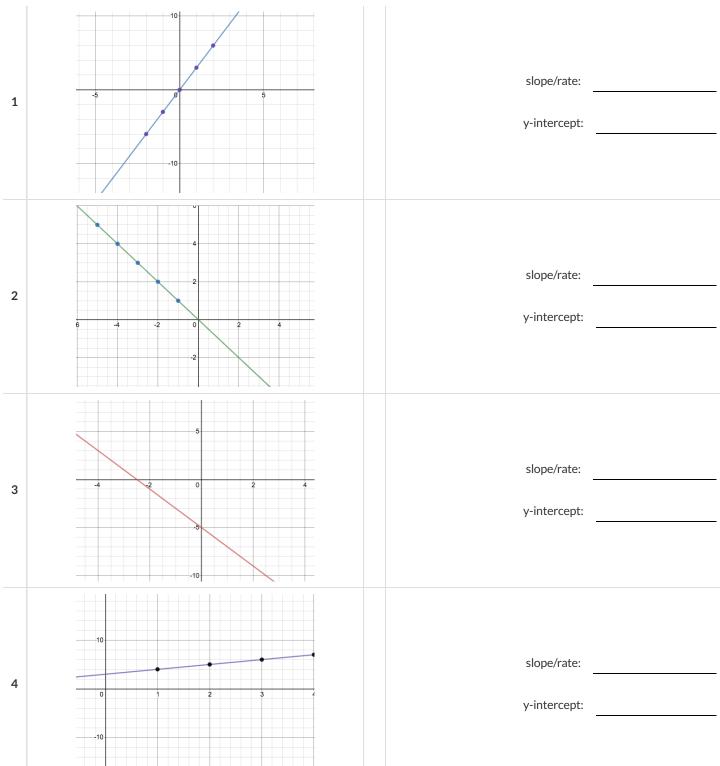
Calculate the slope and y-intercept from any two points! Be sure to show your work.

x	3	20	5	9	1
у	5	56	11	23	-1

- 6) Compute the slope:
- 7) Compute the y-intercept:

	Slope & y-Intercept from Tables (Basic Practice)									
	х	-1	0	1	2	3	4			
	у	-1	2	5	8	11	14			
1) slope:		y-intercept:								
	x	-2	-1	0	1	2	3			
	У	15	10	5	0	-5	-10			
2) slope:		y-intercept:								
	х	-3	-2	-1	0	1	2			
	У	-1	-0.5	0	0.5	1	1.5			
3) slope:		y-intercept:								
	x	-1	0	1	2	3	4			
	у	-7	-3	1	5	9	13			
4) slope:			y-in	tercept:						
	x	-5	-4	-3	-2	-1	0			
	У	1	2.5	4	5.5	7	8.5			
5) slope:			y-in	tercept:						
	x	-3	-2	-1	0	1	2			
	У	0	12.5	25	37.5	50	62.5			
6) slope:			y-in	tercept:						
	х	1	2	3	4	5	6			
	У	5	3	1	-1	-3	-5			
7) slope:			y-in	tercept:						
	x	-4	-2	0	2	4	6			
	У	0	4	8	12	16	20			
8) slope:			y-in	tercept:						

Identifying Slope in Tables


Can you identify the **slope** for the functions represented in each of these tables?

Note: Some tables may have their rows out of order!

	х	у	
	0	3	
1	1	5	slope/rate:
	2	7	
	3	9	
	х	у	
	-5	35	
2	-4	28	slope/rate:
	-3	21	
	-2	14	
	х	у	
	12	15	
3	13	15.5	slope/rate:
	14	16	
	16	17	
	x	У	
	1	39	
4	4	36	slope/rate:
	3	37	
	2	38	
	х	у	
	13	57	
5	9	41	slope/rate:
	11	49	
	7	33	

Identifying Slope and y-intercept in Graphs

Can you identify the **slope** and **y-intercept** for each of these graphs?

Solving Word Problems

Being able to see functions as Contracts, Examples or Definitions is like having three powerful tools. These representations can be used together to solve word problems!

- 1) When reading a word problem, the first step is to figure out the **Contract** for the function you want to build. Remember, a Contract must include the Name, Domain and Range for the function!
- 2) Then we write a **Purpose Statement**, which is a short note that tells us what the function *should do*. Professional programmers work hard to write good purpose statements, so that other people can understand the code they wrote!
- 3) Next, we write at least two **Examples**. These are lines of code that show what the function should do for a *specific* input. Once we see examples of at least two inputs, we can *find a pattern* and see which parts are changing and which parts aren't.
- 4) To finish the Examples, we circle the parts that are changing, and label them with a short variable name that explains what they do.
- 5) Finally, we **define the function** itself! This is pretty easy after you have some examples to work from: we copy everything that didn't change, and replace the changeable stuff with the variable name!

Matching Word Problems and Purpose Statements

Match each word problem below to its corresponding purpose statement.

Annie got a new dog, Xavier, that eats about 5 times as much as her little dog, Rex, who is 10 years old. She hasn't gotten used to buying enough dogfood for the household yet. Write a function that generates an estimate for how many pounds of food Xavier will eat, given the amount of food that Rex usually consumes in the same amount of time.	П	⋖	Consume the pounds of food Rex eats and add 5.
Adrienne's raccoon, Rex, eats 5 more pounds of food each week than her pet squirrel, Lili, who is 7 years older. Write a function to determine how much Lili eats in a week, given how much Rex eats.	2	Ф	Consume the pounds of food Rex eats and subtract 5.
Alejandro's rabbit, Rex, poops about 1/5 of what it eats. His rabbit hutch is 10 cubic feet. Write a function to figure out how much rabbit poop Alejandro will have to clean up depending on how much Rex has eaten.	м	O	Consume the pounds of food Rex eats and multiply by 5.
ঠি Max's turtle, Rex, eats 5 pounds less per week than his turtle, Harry, who is 2 inches taller. Write a function to calculate how much food Harry eats, given the weight of Rex's food.	4	Ω	Consume the pounds of food Rex eats and divide by 5.

Writing Examples from Purpose Statements

We've provided contracts and purpose statements to describe two different functions. Write examples for each of those functions.

Contract a	and P	urpose State	ement											
Every contract	has thr	ee parts												
; triple	:						Number						->	Number
function name							Domain							Range
• Consumes	a Ni	ımber and	triples i	t.										
						what	does the fun	ction do?						
Examples														
Write some exa	mples,	then circle and	label what	changes										
(EXAMPLE	()							
		function	name		inp	out(s)				what	the function pr	oduces		.
(EXAMPLE	()							
		function	name		inp	out(s)				what	the function pr	oduces		
		urpose State	ement											
Every contract		ee parts												
; upside-dov	vn:						Image						->	Image
function name							Domain							Range
• Consumes	an I	mage, ana	turns it	upsiae d	lown by									
Examples						wnar	does the fun	ciion dos						
		th an almaha amal	l ala al coda at	ala assa a a										
Write some exa	rripies,	trien circie and	iapei wnat	cnanges										
(EXAMPLE	()					
		function	name			input	(s)							
														.;
(EXAMPLE	,					wha	t the function	produces 1						
LVALIFEE	(function	namo			innut(a)		/			what the function	on product		
		runction	name			input(s)					wriat the tunction	on produces	•	

Fixing Purpose Statements

Beneath each of the word problems below is a purpose statement that is either missing information or includes unnecessary information. Write an improved version of each purpose statement beneath the original.

1) Word Problem: The New York City ferry costs \$2.75 per ride. The Earth School requires two chaperones for any field trip. Write a function fare
that takes in the number of students in the class and returns the total fare for the students and chaperones.
Purpose Statement: Define a function fare to take in the number of students and add 2.
Improved Purpose Statement:
2) Word Problem: It is tradition for the Green Machines to go to Humpy Dumpty's for ice cream with their families after their soccer games. Write a
function cones to take in the number of kids and calculate the total bill for the team, assuming that each kid brings two family members and cones
cost \$1.25.
Purpose Statement: Define a function cones to take in the number of kids on the team and multiply it by 1.25.
Improved Purpose Statement:
2) Ward Drahlam. The cost of venting an child is \$2 plus an additional \$0.12 non-minute White a function child that will calculate the cost of a
3) Word Problem: The cost of renting an ebike is \$3 plus an additional \$0.12 per minute. Write a function ebike that will calculate the cost of a ride, given the number of minutes ridden.
Purpose Statement: Define a function ebike to take in the number of minutes and multiply it by 3.12.
Improved Purpose Statement:
improved Fur pose Statement.
4) Word Problem: Suleika is a skilled house painter at only age 21. She has painted hundreds of rooms and can paint about 175 square feet an hour.
Write a function paint that takes in the number of square feet of the job and calculates how many hours it will take her.
Purpose Statement: Define a function paint to take in the number of square feet of walls in a house and divide them by 175 to calculate
the number of hours that it will take 21 year-old Suleika to complete the paint job.
Improved Purpose Statement:

Word Problem: rocket-height

Directions: A rocket blasts off, and is now traveling at a constant velocity of 7 meters per second. Use the Design Recipe to write a function rocket-height, which takes in a number of seconds and calculates the height.

Contract and Pu	ırpose Statement						
Every contract has thre	ee parts						
•	:					->	
function name	e		Domain				Range
<u>, </u>							
		wnara	loes the function do?				
Examples							
Write some examples, t	then circle and label what change	S					
(EXAMPLE ())
	function name	input(s)			what the function produces		
(EXAMPLE ()				
	function name	input(s)			what the function produces		
Definition							
Write the definition, giv	ving variable names to all your inp	out values					
(define ()
	function name			variable(s)			_

what the function does with those variable(s)

Danger and Target Movement

Directions: Use the Design Recipe to write a function update-danger, which takes in the danger's x-coordinate and produces the next x-coordinate, which is 50 pixels to the left.

Contract ar	nd Purpose Statement			
Every contract h	as three parts			
•	:		-:	>
function	on name	Domain		Range
<u>;</u>		which along the four thought of		
Examples		what does the function do?		
	uples, then circle and label what changes.			
(EXAMPLE))
•	function name	input(s)	what the function produces	
(EXAMPLE	())
	function name	input(s)	what the function produces	
Definition				
Write the definiti	on, giving variable names to all your inpu	ıt values		
(define ()
_	function name		variable(s)	,
		what the function does with those variable	s/c)	
		a. iiie ionelien dees iiiin iiiese valabie	1-7	
coordinate, w	which is 50 pixels to the right.	function update-target , which take	es in the target's x-coordinate and produ	ices the next x-
Every contract he				
•			-;	>
• function	on name	Domain		Range
•				
		what does the function do?		
Examples				
Write some exam	ples, then circle and label what changes.	. .		
(EXAMPLE	())
(EXAMPLE	function name	input(s)	what the function produces	,
(EXAMPLE	function name		what the function produces	
Definition	rononomina	" houtes	a rottellott produces	
	on, giving variable names to all your inpu	ut values		
(define (on, giving variable names to all your inpu	it values		١
(uerthe (function name		variable(s)	
			• •	,

80

what the function does with those variable(s)

Surface Area of a Rectangular Prism - Explore

1) What do you pictur	e in your mind when you hear <i>re</i>	ctangular prism?	
2) What do you pictur	e in your mind when you hear su	ırface area ?	
3) Open the Surface A	rea of a Rectangular Prism Start	er File and click "Run".	
4) Type prism into t	he Interactions Area and hit "en	ter" to see an image of a recta	ngular prism. What do you notice about the image?
5) How many faces do	es this prism have?		
Find PART 1 in the sta	arter file. You will see a definition	on for front and back.	
6) How did the author	know to use width and height as	s the dimensions for front a	and back?
7) Why are front a	nd back defined to be the sam	e thing?	
8) Add definitions for	the other faces of the prism, usin	ng these definitions as a model	, and the image of the prism as a support.
Find PART 2 in the sta	arter file. You'll see a list that on	nly includes front and bad	ck.
9) Complete the faces	list, then type (print-imgs	faces) into the interactions	s area. What do you see?
We're going to print t	he faces following directions in	PART 3 and build a paper mo	odel of a rectangular prism.
			r prism at the top of the starter file. Be sure that all 3 I change them, record your new dimensions here.
LENGTH:	WIDTH:	HEIGHT:	
12) Calculate the surfa	ace area of your prism, by adding	the area of each face.	Show your work below.
13) In PART 4 of the st	arter file, you wrote code to calc	culate the surface area. How n	nany definitions did you use?
14) How does the surf	ace area that the computer retu	rns compare to the surface ar	ea you calculated by hand?

Problem Decomposition

- Sometimes a problem is too complicated to solve all at once. Maybe there are too many variables, or there is just so much information that we can't get a handle on it!
- We can use **Problem Decomposition** to break those problems down into simpler pieces, and then work with the pieces to solve the whole. There are two strategies we can use for decomposition:
 - **Top-Down** Start with the "big picture", writing functions or equations that describe the connections between parts of the problem. Then, work on defining those parts.
 - **Bottom-Up** Start with the smaller parts, writing functions or equations that describe the parts we understand. Then, connect those parts together to solve the whole problem.
- You may find that one strategy works better for some types of problems than another, so make sure you're comfortable using either one!

Word Problems: revenue, cost

Directions: Use the Design Recipe to write a function revenue, which takes in the number of glasses sold at \$1.75 apiece and calculates the total revenue.

Contract and Purpose S Every contract has three parts					
•					
<u>, </u>					->
function name	<u> </u>		Domain		Range
• •					
-		what a	loes the function do?		
Examples					
Write some examples, then circle	e and label what changes				
(EXAMPLE ())
	unction name	input(s)	1	what the function produces	,
(EXAMPLE (unction name	input(s)	/	what the function produces	
Definition	mellormanie	#IPOI(3)		What the folicitor produces	
	able names to all your innu	tualuas			
Write the definition, giving varia	ible names to all your input	values			,
(define (ion name			ariable(s)	
TOTICI	ion name		v	anabie(s))
-		what the func	tion does with those variable(s)		
materials if each glass cos Contract and Purpose S		_			
Every contract has three parts					
•	:				->
function name			Domain		Range
<u>, </u>			loes the function do?		
Examples		wnard	loes the function do?		
Write some examples, then circle	e and label what changes				
(EXAMPLE ())
	unction name	input(s)		what the function produces	
(EXAMPLE ())
	unction name	input(s)		what the function produces	
Definition					
Write the definition, giving varia	able names to all your input	t values			
Write the definition, giving varia	able names to all your input	t values		ariable(s))

what the function does with those variable(s)

Word Problem: profit

Directions: Use the Design Recipe to write a function profit that calculates total profit from glasses sold, which is computed by subtracting the total cost from the total revenue.

Contract and P	urpose Statement					
Every contract has the	ree parts					
•	:				->	
function nar	me		Domain			Range
<u>, </u>						
		what c	loes the function do?			
Examples						
Write some examples,	then circle and label what changes	5				
(EXAMPLE ()			,
_	function name	input(s)		what the func	ction produces	
(EXAMPLE ()			•
	function name	input(s)		what the func	ction produces	
Definition						
Write the definition, g	iving variable names to all your inp	out values				
(define (,
	function name			variable(s)	-	
						,
		what the func	tion does with those vario	able(s)		

Profit - More than one Way!

Four students defined the same revenue and cost functions, shown below:

```
(define (revenue g) (* 1.75 g))
(define (cost g) (* 0.3 g))
```

However, they came up with **four different definitions** for <code>profit</code>:

Khalil:	(define (profit g) (- (* 1.75 g) (* 0.3 g)))
Samaria:	(define (profit g) (* (- 1.75 0.3) g))
Alenka:	(define (profit g) (* 1.45 g))
Fauzi:	<pre>(define (profit g) (- (revenue g) (cost g)))</pre>
1) Which of thes	four definitions do you think is "best", and why?
2) If lemons get	ore expensive, which definitions of profit need to be changed?
3) If Sally raises	r prices, which definitions of profit need to be changed?
4) Which definit	n of profit is the most flexible? Why?
-	

Top Down or Bottom Up

Jamal's trip requires him to drive 20mi to the airport, fly 2,300mi, and then take a bus 6mi to his hotel. His average speed driving to the airport is 40mph, the average speed of an airplane is 575mph, and the average speed of his bus is 15mph.

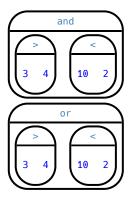
Aside from time waiting for the plane or bus, how long is Jamal in transit?

Bear's Strategy:	Lion's Strategy:
$DriveTime = 20miles \times \frac{1hour}{40miles} = 0.5hours$	InTransitTime = DriveTime + FlyTime + BusTime
$FlyTime = 2300miles \times \frac{1hour}{575miles} = 4hours$	$DriveTime = 20miles \times \frac{1hour}{40miles} = 0.5hours$
$BusTime = 6miles \times \frac{1hour}{15miles} = 0.4hours$	$FlyTime = 2300miles \times \frac{1hour}{575miles} = 4hours$
InTransitTime = DriveTime + FlyTime + BusTime	$BusTime = 6miles \times \frac{1hour}{15miles} = 0.4hours$
0.5 + 4 + 0.4 = 4.9 hours	0.5 + 4 + 0.4 = 4.9 hours

¹⁾ Whose Strategy was Top Down? How do you know?

- 2) Whose Strategy was Bottom Up? How do you know?
- 3) Which way of thinking about the problem makes more sense to you?

What's happening with that Math?!


When calculating Jamal's drive time, we multiplied distance by speed. More specifically, we multiplied the starting value (20miles) by $\frac{1hour}{40miles}$. Why? Why not reverse it, to use $\frac{40miles}{1hour}$, as stated in the problem?

Time is the desired outcome. Looking at the units, we can see that speed must have *miles* as its denominator to *cancel out* the *miles* in the starting value.

$$\frac{20mi}{1} \times \frac{1hour}{40miles} = \frac{20 \frac{miles}{1} \times 1hour}{40 \frac{miles}{1}} = \frac{20}{40} hour = \frac{1}{2} hour$$

Inequalities

- Sometimes we want to *ask questions* about data. For example, is x greater than y? Is one string equal to another? These questions can't be answered with **Numbers**. Instead, they are answered with a new data type called a **Boolean**.
- video games use Booleans for many things: asking when a player's health is equal to zero, whether two characters are close enough to bump into one another, or if a character's coordinates put it off the edge of the screen.
- A Boolean value is either true or false. Unlike Numbers, Strings, and Images, Booleans have only two possible values.
- You already know some functions that produce Booleans, such as < and >! Our programming language has them, too: (< 3 4),
 (> 10 2), and (= -10 19).
- We also have ways of writing Compound Inequalities, so we can ask more complicated questions using the and or functions.
 - (and (> 3 4) (< 10 2)) translates to "three is greater than four *and* ten is less than two". This will evaluate to false, since the and function requires that both sub-expressions be true.
 - o (or (> 3 4) (< 10 2)), which translates to "three is greater than four or ten is less than two". This will evaluate to true, since the or function only requires that one sub-expression be true.
- The Circles of Evaluation work the same way with Booleans that they do with Numbers, Strings and Images:

Boolean Functions
Explore the functions in the <i>Booleans Starter File</i> . What characteristics define them as Booleans?
Fill in the blanks below so that each of the five functions returns true
1) (odd?)
2) (even?)
3) (less-than-one?)
4) (continent?)
5) (primary-color?)
Fill in the blanks below so that each of the five functions returns false
6) (odd?)
7) (even?)
8) (less-than-one?)

9) (continent? _____)

10)(primary-color? _____)

Simple Inequalities

Each inequality expression in the first column contains a number.

Decide whether or not that number is a solution to the expression and place it in the appropriate column.

Then identify 4 solution and 4 non-solution values for x.

- Solutions will make the expression true.
- Non-Solutions will make the expression false.

Challenge yourself to use negatives, positives, fractions, decimals, etc. for your x values.

	Expression	4 solutions that evaluate to true	4 non-solutions that evaluate to false
а	(> × 2)		
b	(<= x -2)		
С	(< × 3.5)		
d	(>= x -1)		
е	(> x -4)		
f	(<> x 2)		

1) For which inequalities was the number from the expression part of the solution	1)	For which inea	qualities was the	number from the ex	pression part o	f the solutio
---	----	----------------	-------------------	--------------------	-----------------	---------------

- 2) For which inequalities was the number from the expression not part of the solution?
- 3) For which inequalities were the solutions on the left end of the number line?
- 4) For which inequalities were the solutions on the right end of the number line?

Converting Circles of Evaluation to Code

For each Circle of Evaluation on the left-hand side, write the Code for the Circle on the right-hand side

	Circle of Evaluation	Code
1	> + 4 5 9	
2	and < < < 10 15	
3	string=? yum "apple" yum "banana"	
4	>= (string-length "My Game") 6	
5	and and contact the second sec	

Compound Inequalities — Practice

Create the Circles of Evaluation, then convert the expressions into Code in the space provided.
1) 2 is less than 5, and 0 is equal to 6
What will this evaluate to?
2) 6 is greater than 8, or -4 is less than 1
What will this evaluate to?
3) The String "purple" is the same as the String "blue", and 3 plus 5 equals 8
What will this evaluate to?
4) Write the contracts for and & or in your Contracts page.

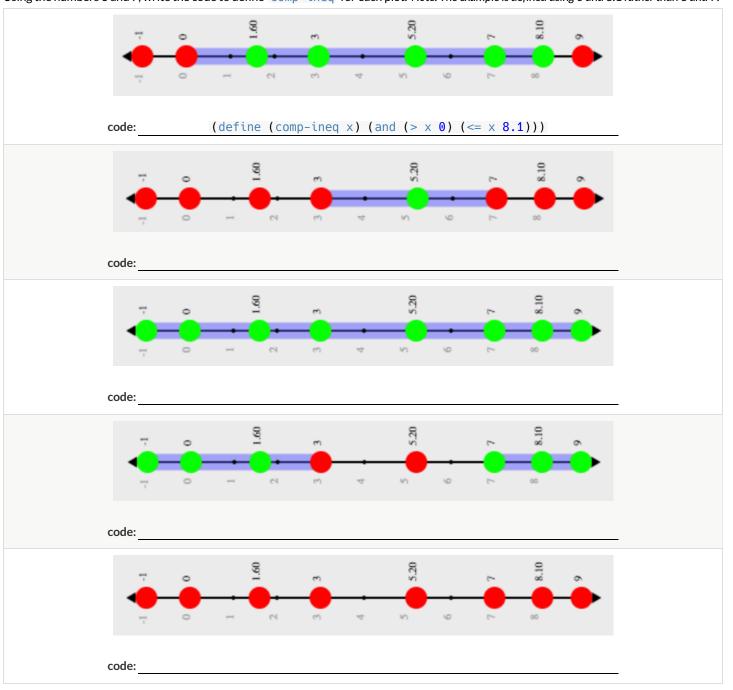
Compound Inequalities: Solutions & Non-Solutions

For each Compound Inequality listed below, identify 4 solutions and 4 non-solutions.

If there are **no solutions** or the solution set includes **all real numbers**, write that instead of making a list.

- Solutions for intersections, which use and will make both of the expressions true.
- Solutions for *unions*, which use **or** will make at least one of the expressions true.

Pay special attention to the numbers in the sample expression! Challenge yourself to use negatives, positives, fractions, decimals, etc. for your x values.


The first two have been done for you - Answers will vary!

	Expression	4 solutions that evaluate to true	4 non-solutions that evaluate to false
а	x > 5 and $x < 15$	6, 9.5, 12, 14.9	-2, 5, 15, 16.1
b	x > 5 or x < 15	All real numbers	No non-solutions
С	$x \le -2$ and $x > 7$		
d	$x \ll -2 \text{ or } x > 7$		
е	x < 3.5 and x > -4		
f	x < 3.5 or x > -4		
g	$x \ge -1$ and $x \ge -5$		
h	$x \ge -1 \text{ or } x \ge -5$		
i	x < -4 and x > 2		

L) Could	there ever be a union with	no solutions? Explain you	r thinking.		
2) Could	there ever be an intersecti	on whose solution is <i>all re</i>	al numbers ? Explain you	rthinking.	

Compound Inequality Functions

Each of the plots below was generated using the code inequality (comp-ineq, [list: -1, 0, 1.6, 3, 5.2, 7, 8.1, 9]). Using the numbers 3 and 7, write the code to define comp-ineq for each plot. Note: The example is defined using 0 and 8.1 rather than 3 and 7.

Sam the Butterfly

Open the $\underline{\sf Sam}$ the $\underline{\sf Butterfly}$ $\underline{\sf Starter}$ File starter file and click "Run". (Hi, Sam!)

Move Sam around the screen using the arrow keys.

1) What do you Notice about the program?
2) What do you Wonder?
3) What do you see when Sam is at (0,0)? Why is that?
4) What changes as the butterfly moves left and right?
Sam is in a 640×480 yard. Sam's mom wants Sam to stay in sight. How far to the left and right can Sam go and still remain visible?
Use the new inequality functions to answer the following questions with code:
5) Sam hasn't gone off the left edge of the screen as long as
6) Sam hasn't gone off the right edge of the screen as long as

7) Use the space below to draw Circles of Evaluation for these two expressions:

Left and Right

Directions: Use the Design Recipe to write a function safe-left?, which takes in an x-coordinate and checks to see if it is greater than -50.

Contract and Pu	ırpose Statement				
Every contract has thre					
•	:				->
function nam	е		Domain		Range
• •		u hart a	oes the function do?		
Examples		whara	oes me function dos		
Write some examples, t	hen circle and label what changes				
(EXAMPLE ())
	function name	input(s)		what the function p	produces
(EXAMPLE (function name	input(s)	/	what the function p) oraduoos
Definition	ionciion name	III DOI(s)		what the foliction (Diodoces
	ving variable names to all your inp	ut values			
(define (,)
	function name			variable(s)	
)
	ırpose Statement	function safe-righ	nt?, which take	s in an x-coordinate and chec	ks to see if it is less than 690.
function nam	:		Domain		->
•	6		Domain		kunge
,		what d	oes the function do?		
Examples					
Write some examples, t	hen circle and label what changes				
(EXAMPLE ())
(EXAMPLE (function name	input(s)		what the function (produces)
	function name	input(s)		what the function p	oroduces
Definition					
Write the definition, giv	ving variable names to all your inp	ut values			
(define ()
	function name			variable(s)	

what the function does with those variable(s)

Word Problem: onscreen?

Directions: Use the Design Recipe to write a function onscreen?, which takes in an x-coordinate and checks to see if Sam is safe on the left while also being safe on the right.

Contract and Pu	rpose Statement						
Every contract has three	parts						
•	:					->	
function name			Domain				Range
<u>;</u>							
		what a	oes the function do?				
Examples							
Write some examples, th	nen circle and label what change.	S					
(EXAMPLE ()				
	function name	input(s)			what the function produces		
(EXAMPLE ()				
	function name	input(s)			what the function produces		
Definition							
Write the definition, givi	ing variable names to all your inp	out values					
(define (
	function name			variable(s)			_

Piecewise Functions

- Sometimes we want to build functions that act differently for different inputs. For example, suppose a business charges \$10/pizza, but only \$5 for orders of six or more. How could we write a function that computes the total price based on the number of pizzas?
- In math, **Piecewise Functions** are functions that can behave one way for part of their Domain, and another way for a different part. In our pizza example, our function would act like cost(pizzas) = 10 * pizzas for anywhere from 1-5 pizzas. But after 5, it acts like cost(pizzas) = 5 * pizzas.
- Piecewise functions are divided into "pieces". Each piece is divided into two parts:
 - 1. How the function should behave
 - 2. The domain where it behaves that way
- Our programming language can be used to write piecewise functions, too! Just as in math, each piece has two parts:

```
(define (cost pizzas)
  (cond
  [(>= pizzas 6) (* 5 pizzas)])
```

Piecewise functions are powerful, and let us solve more complex problems. We can use piecewise functions in a video game to add or subtract from a character's x-coordinate, moving it left or right depending on which key was pressed.

Red Shape - Explore

1) Open the Red Shape Starter File, and read through the code you find there. This code contains new programming that you haven't seen yet! Take a moment to list everything you Notice, and then everything you Wonder...

Notice	Wonder							
2) What happens if you click "Run" and type (red-shape "ellipse") ?								
3) Add another example for "triangle".								
4) Add another line of code to the definition, to define what the function should do with the input "triangle".								
5) Come up with some new shapes, and add them to the code. Make sure you include examples or you will get an error message!								
6) In your own words, describe how <i>piecewise functions</i> work in this programming environment.								

Word Problem: red-shape

Directions: A friend loves red shapes so we've decided to write a program that makes it easy to generate them. Write a function called red-shape which takes in the name of a shape and makes a 20-pixel, solid, red image of the shape.

Contract a	and Purpose Stateme	ent				
Every contract	has three parts					
; red-shape	:			String	->	Image
function name				Domain		Range
; Given a s	hape name, produce	a solid, red, 20-pix	æl in			
				what does the function do?		
Examples						
Write some exa	mples, then circle and labe	what changes				
(EXAMPLE	(red-shape	"circle")	(circle 20 "solid" "red"))
	function name	input(s)		what the function produces		
(EXAMPLE	(red-shape	"triangle")	(triangle 20 "solid" "red"))
	function name	input(s)		what the function produces		
(EXAMPLE	(red-shape	"rectangle")	(rectangle 20 20 "solid" "red"))
/	function name	input(s)		what the function produces		
(EXAMPLE	(red-shape	"star")	(star 20 "solid" "red")		
	function name	input(s)		what the function produces		
Definition						
Write the defin	ition, giving variable names	to all your input values				
(define ()
	function name			variable(s)		
(cond						
[]
				-		
L						
Г						1
-						
[]
[
))

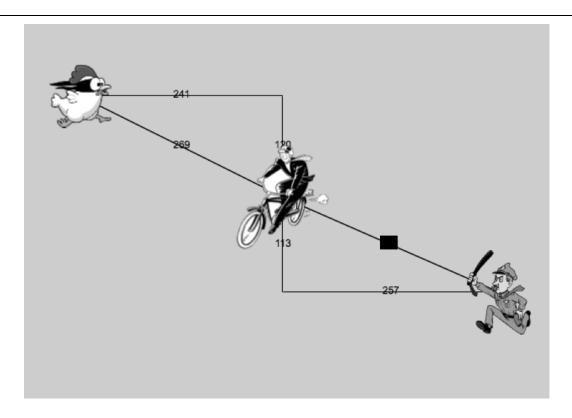
Word Problem: update-player

Directions: The player moves by 20 pixels each time the up or down key is pressed. Write a function called update-player, which takes in the player's y-coordinate and the name of the key pressed ("up" or "down"), and returns the new y-coordinate.

Contract and	Purpose Statement					
Every contract has t	hree parts					
•	:					->
function no	ame			Domain		Range
•			what do	es the function do?		
Examples						
Write some example	es, then circle and label what	changes				
(EXAMPLE (u	ıpdate-player	300 "up")			
_	function name	input(s)			what the function produces	
(EXAMPLE (_)		
/ E V A M D I E /	function name	inį	out(s)	١	what the function produces	
(EXAMPLE (_				/		
(EXAMPLE (function name	ını	out(s))	what the function produces	
	function name	ini	out(s)	′	what the function produces	
Definition			.,			
Write the definition,	giving variable names to all	your input values				
(define (
	function name				variable(s)	
(cond						
[]
г						
L						
[])

Challenges for update-player

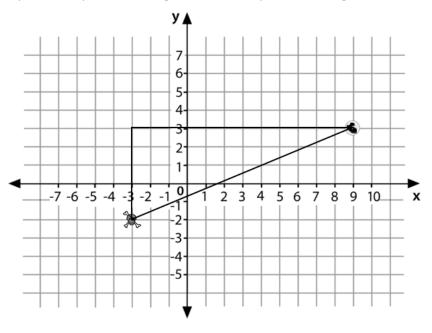
For each of the challenges below, see if you can come up with two EXAMPLEs of how it should work
--

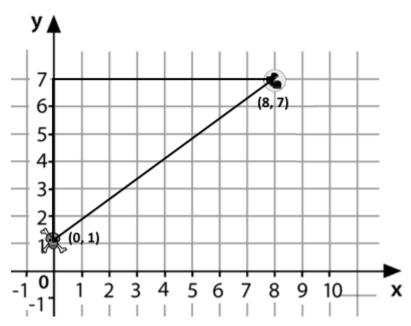

1) Warping - Program one key to "warp" the player to a set location, such as the center of the screen.

(EXAMPLE (update-player)	
)		
(EXAMPLE (update-player)	
)		
2) Boundaries - Change update-playe	such that PLAYER cannot move off the top or bottom of the screen.	
(EXAMPLE (update-player)	
)		
(EXAMPLE (update-player)	
)		
3) Wrapping - Add code to update-plaversa.	er such that when PLAYER moves to the top of the screen, it reappears at the bottom,	and vice
		and vice
versa.		and vice
versa. (EXAMPLE (update-player)	and vice
versa. (EXAMPLE (update-player))	and vice
versa. (EXAMPLE (update-player))	and vice
Versa. (EXAMPLE (update-player) (EXAMPLE (update-player))	and vice
Versa. (EXAMPLE (update-player) (EXAMPLE (update-player)	R seem to disappear, and reappear when the same key is pressed again.	and vice
versa. (EXAMPLE (update-player) (EXAMPLE (update-player) 4) Hiding - Add a key that will make PLAY	R seem to disappear, and reappear when the same key is pressed again.	and vice
versa. (EXAMPLE (update-player) (EXAMPLE (update-player) 4) Hiding - Add a key that will make PLAY	R seem to disappear, and reappear when the same key is pressed again.	and vice

Writing Code to Calculate Missing Lengths

In each of the game screenshots below, one of the distance labels has been hidden. Write the code to generate the missing distance on the line below each image. Hint: Remember the Pythagorean Theorem!




Distance on the Coordinate Plane

Distance between the pyret and the boot:

(sqrt (+ (sqr (line-length 9 -3)) (sqr (line-length 3 -2))))

Explain how the code works.

Now write the code to find the distance between this boot and pyret.

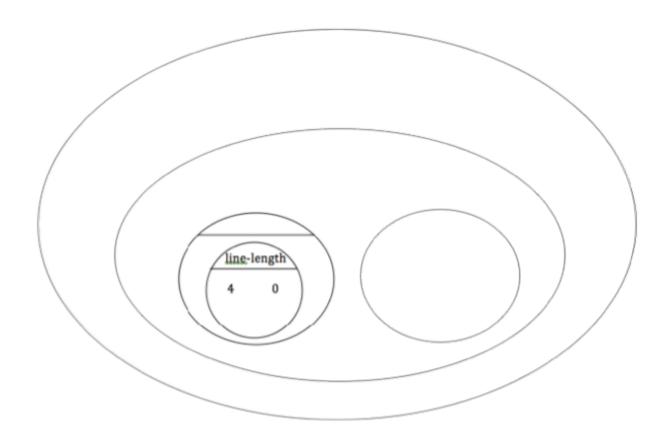
Circles of Evaluation: Distance between (0, 2) and (4, 5)

The distance between x_1 and x_2 is computed by (line-length x1 x2). The distance between y_1 and y_2 is computed by (line-length y1 y2). Below is the equation to compute the hypotenuse of a right triangle with those amount for legs:

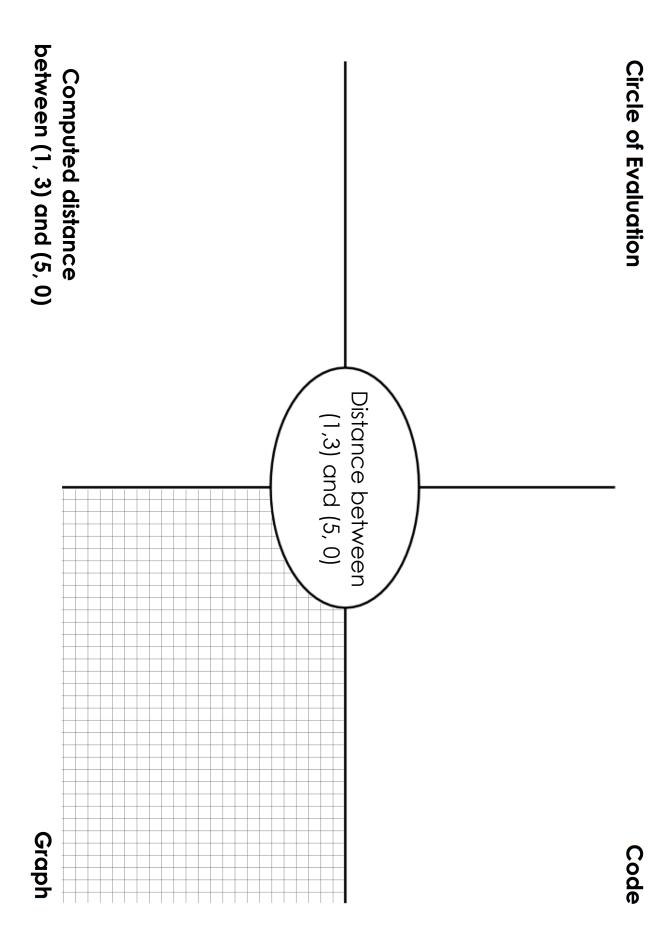
$$\sqrt{line\text{-length}(x_2,x_1)^2 + line\text{-length}(y_2,y_1)^2}$$

Suppose your player is at (0, 2) and a character is at (4, 5). What is the distance between them?

1. Identify the values of x_1 , y_1 , x_2 , and y_2

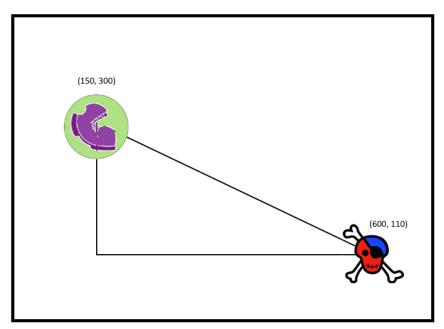

<i>x</i> ₁	у1	<i>x</i> 2	у2
(x-value of 1st point)	(y-value of 1st point)	(x-value of 2nd point)	(y-value of 2nd point)

The equation to compute the distance between these points is:

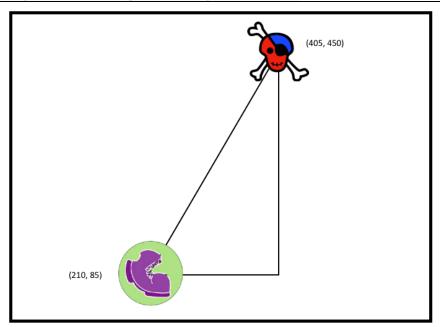

$$\sqrt{line-length(4,0)^2 + line-length(5,2)^2}$$

2. Translate the expression above, for (0,2) and (4,5) into a Circle of Evaluation below.

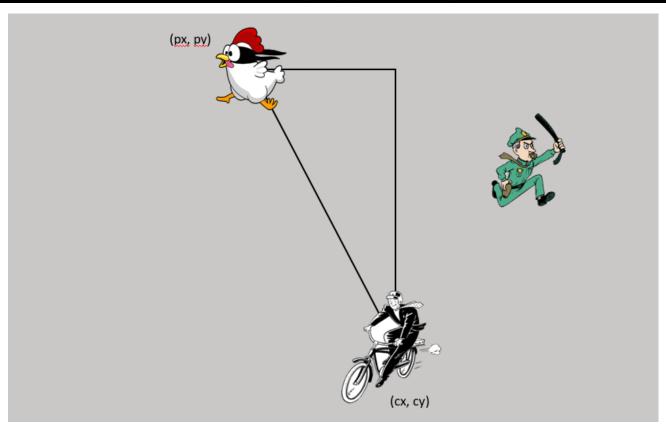
Hint: In our programming language sqr is used for x^2 and sqrt is used for \sqrt{x}



3. Convert the Circle of Evaluation to Code below.

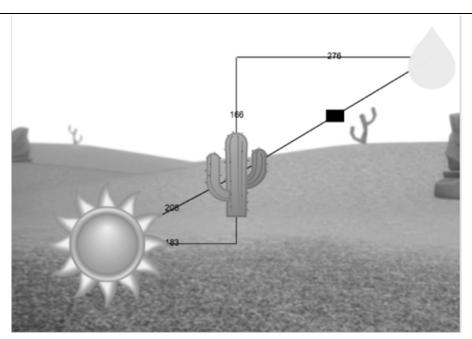


Distance From Game Coordinates

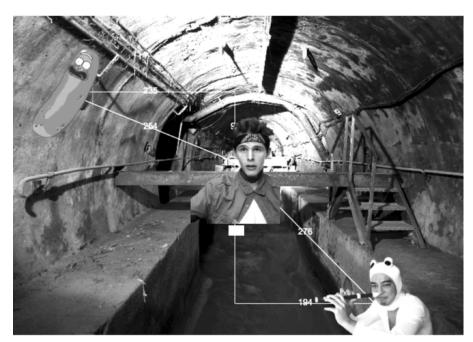

For each of the game screenshots, write the code to calculate the distance between the indicated characters. *The first one has been done for you.*

(sqrt (+ (sqr (line-length 600 150)) (sqr (line-length 110 300))))

Distance (px, py) to (cx, cy)



Directions: Use the Design Recipe to write a function distance, which takes in FOUR inputs: px and py (the x- and y-coordinate of the Player) and cx and cy (the x- and y-coordinates of another character), and produces the distance between them in pixels.


Contract and Purpose Statement				
Every contract has three parts				
:				->
function name		Domain		Range
•				
	what c	oes the function do?		
Examples				
Write some examples, then circle and label what change	S			
(EXAMPLE ()		
function name	input(s)		what the function	produces
(EXAMPLE ()		
function name	input(s)		what the function	produces
Definition				
Write the definition, giving variable names to all your inp	out values			
(define (
function name			variable(s)	
	what the fire	ion does with those variable	0/0	

Comparing Code: Finding Missing Distances

For each of the game screenshots below, the math and the code for computing the covered distance is shown. Notice what is similar and what is different about how the top and bottom distances are calculated. Think about why those similarities and differences exist and record your thinking.

$$\sqrt{166^2 + 276^2}$$
 (sqrt (+ (sqr 166) (sqr 276)))

$$\sqrt{276^2 - 194^2}$$
 (sqrt (- (sqr 276) (sqr 194)))

Top Down/Bottom Up

A retractable flag pole starts out 24 inches tall, and grows taller at a rate of 0.6 in/sec. An elastic is anchored 200 inches from the base and attached to the top of the pole, forming a right triangle. Using a top-down or bottom-up strategy, define functions that compute the *height* of the pole and the *area* of the triangle after a given number of seconds.

height(sec) = ? area(sec) = ?	
4	24"
200"	

•		-/
• •		
(EXAMPLE ())
(EXAMPLE ())
(define ()
)
<u>;</u> :		->
•		
(EXAMPLE ())
(EXAMPLE ())
(define ()
)

Word Problem: collision?

Directions: Use the Design Recipe to write a function collision?, which takes in FOUR inputs: px and py (the x- and y-coordinate of the Player) and cx and cy (the x- and y-coordinates of another character), and checks if they are close enough to collide.

Contract and	d Purpose Statement						
Every contract has	s three parts						
•	:					->	
function	name		Domain				Range
<u>, </u>		to aut	d				
		wnar	does the function do?				
Examples							
Write some examp	oles, then circle and label what changes	···					
(EXAMPLE (())
	function name	input(s)			what the function produces		
(EXAMPLE (())
	function name	input(s)			what the function produces		
Definition							
Write the definition	on, giving variable names to all your inp	ut values					
(define ()
_	function name			variable(s)			
)

Contracts tell us how to use a function. e.g. ellipse :: Number, Number, String, String -> Image tells us that the name of the function is ellipse, and that it takes four inputs (two Numbers and two Strings). From the contract, we know (ellipse 100 50 "outline" "red") will evaluate to an Image.

Name		Domain		Range
+	••	Number, Number	V	Number
(+ 3 2)				
- :	::	Number, Number	>	Number
(-53)				
; *	::	Number, Number	>	Number
(* 2 4)				
/ ;	::	Number, Number	>	Number
(/ 8 2)				
; sqrt	::	Number	>	Number
; (sqrt 25)				
; sqr	::	Number	>	Number
; (sqr 5)				
; string-length	::	String	>	Number
(string-length "Rainbow")				
> {	::	Number, Number	\ \	Boolean
(< 3 2)				
< !	::	Number, Number	>	Boolean
(> 3 2)				

Contracts tell us how to use a function. e.g. ellipse :: Number, Number, String, String -> Image tells us that the name of the function is ellipse, and that it takes four inputs (two Numbers and two Strings). From the contract, we know (ellipse 100 50 "outline" "fuchsia") will evaluate to an Image.

Name		Domain		Range
111	::	Number, Number	٨	Boolean
(= 3 2)				
=> :	::	Number, Number	^-	Boolean
(<= 3.2)				
=< :	::	Number, Number	^ -	Boolean
(>= 3.2)				
<>:	::	Number, Number	^	Boolean
(<> 3.2)				
;string=?	::	String, String	^	Boolean
(string=? "cat" "kitten")				
;string>=?	::	String, String	^	Boolean
(string>=? "ape" "zebra")				
;string<=?	::	String, String	^	Boolean
(string<=? "Abena" "Zoe")				
;string<>?	::	String, String	^ 1	Boolean
(string<>? "crab" "crawfish")				
; string-append	::	String, String	<u> </u>	String
(string-append "sun" "shine")				

Contracts tell us how to use a function. e.g. ellipse :: Number, Number, String, String -> Image tells us that the name of the function is ellipse, and that it takes four inputs (two Numbers and two Strings). From the contract, we know (ellipse 100 50 "outline" "teal") will evaluate to an Image.

; rhombus	; regular-polygon	;ellipse	; text	;rectangle	;square	; circle	;star	(triangle 80 "solid" "green")	; triangle	Name
::	::	::	::	::	::	::	::		• •	
									Number, String, Sting	Domain
- >	->	->	->	->	->	->	->		V	
									Image	Range

Contracts tell us how to use a function. e.g. ellipse :: Number, Number, String -> Image tells us that the name of the function is ellipse, and that it takes four inputs (true Numbers and two Strings) Error the contract we know (all is all is a large and two Strings) Error the contract we know (all is all is a large and two Strings) Error the contract we know (all is all is a large and two Strings) Error the contract we know (all is all is a large and two Strings) Error the contract we know (all is a large and two Strings) Error the contract we know (all is a large and two Strings) Error the contract we know (all is a large and two Strings) Error the contract we know (all is a large and two Strings) Error the contract we know (all is a large and two Strings) Error the contract we know (all is a large and two Strings) Error the contract we know (all is a large and two Strings) Error the contract we know (all is a large and two Strings) Error the contract we know (all is a large and two Strings) Error the contract we know (all is a large and two Strings) Error the contract we know (all is a large and two Strings) Error the contract the contract and the contract the contract that the contract the c

Name	Domain	Range
; right-triangle	::	^-
; isosceles-triangle	::	^ 1
;radial-star	::	^-
;star-polygon	::	^-
; triangle/sas	::	^-
; triangle/asa	:	^-
;image-url		<u> </u>
(image-url "https:://www.bo	(image-url "https:://www.bootstrapworld.org/images/icon.png")	
; scale	::	^-
; rotate	::	<u> </u>

Contracts tell us how to use a function. e.g. ellipse :: Number, Number, String -> Image tells us that the name of the function is ellipse, and that it takes four inputs (two Numbers and two Strings). From the contract, we know (ellipse 100 50 "solid" "lightblue") will evaluate to an Image.

··	;	; and	; or	; beside	; above	; flip-vertical	; flip-horizontal	; put-image	; overlay	Name
										Domain
	V	-> Boolean	V	V	V	V	V	V	V	Range

These materials were developed partly through support of the National Science Foundation, (awards 1042210, 1535276, 1648684, and 1738598), and are licensed under a Creative Commons 4.0 Unported License. Based on a work at www.BootstrapWorld.org. Permissions beyond the scope of this license may be available by contacting contact@BootstrapWorld.org.