\qquad

Student Workbook

Spring, 2021 - Pyret Edition

Workbook v1.5

Brought to you by the Bootstrap team:

- Emmanuel Schanzer
- Emma Youndtsmith
- Kathi Fisler
- Shriram Krishnamurthi
- Dorai Sitaram
- Joe Politz
- Ben Lerner

Visual Designer: Colleen Murphy
Bootstrap is licensed under a Creative Commons 3.0 Unported License. Based on a work from www.BootstrapWorld.org. Permissions beyond the scope of this license may be available at contact@BootstrapWorld.org.

Introduction to Programming

The Editor is a software program we use to write Code. Our Editor allows us to experiment with Code on the right-hand side, in the Interactions Area. For Code that we want to keep, we can put it on the left-hand side in the Definitions Area. Clicking the "Run" button causes the computer to re-read everything in the Definitions Area and erase anything that was typed into the Interactions Area.

Data Types

Programming languages involve different data types, such as Numbers, Strings, Booleans, and even Images.

- Numbers are values like $1,0.4,1 / 3$, and -8261.003 .
- Numbers are usually used for quantitative data and other values are usually used as categorical data.
- In Pyret, any decimal must start with a 0. For example, 0.22 is valid, but . 22 is not.
- Strings are values like "Emma", "Rosanna", "Jen and Ed", or even "08/28/1980".
- All strings must be surrounded in quotation marks.
- Booleans are either true or false.

All values evaluate to themselves. The program 42 will evaluate to 42 , the String "Hello" will evaluate to "Hello", and the Boolean false will evaluate to false.

Operators

Operators (like +, - , , < , etc.) work the same way in Pyret that they do in math.

- Operators are written between values, for example: $4+2$.
- In Pyret, operators must always have a space around them. $4+2$ is valid, but $4+2$ is not.
- If an expression has different operators, parentheses must be used to show order of operations. $4+2+6$ and $4+(2 * 6)$ are valid, but $4+2$ * 6 is not.

Applying Functions

Applying functions works much the way it does in math. Every function has a name, takes some inputs, and produces some output. The function name is written first, followed by a list of arguments in parentheses.

- In math this could look like $f(5)$ or $g(10,4)$.
- In Pyret, these examples would be written as $f(5)$ and $g(10,4)$.
- Applying a function to make images would look like star (50, "solid", "red").
- There are many other functions, for example num-sqr, num-sqre, triangle, square, string-repeat, etc.

Functions have contracts, which help explain how a function should be used. Every contract has three parts:

- The Name of the function - literally, what it's called.
- The Domain of the function - what types of values the function consumes, and in what order.
- The Range of the function - what type of value the function produces.

Numbers and Strings

Make sure you've loaded the code.pyret.org, (CPO) editor, clicked "Run", and are working in the Interactions Area.

Numbers

1) Try typing 42 into the Interactions Area and hitting "Enter". What is the largest number the editor can handle?
2) Try typing 0.5 . Then try typing . 5 . Then try clicking on the answer. Experiment with other decimals. Explain what you understand about how decimals work in this programming language.
3) What happens if you try a fraction like $1 / 3$?
4) Try writing negative integers, fractions and decimals.
Strings

String values are always in quotes.
5) Is 42 the same as "42" ? Why or why not? Write your answer below:
6) Try typing your name (in quotes!).
7) Try typing a sentence like "I'm excited to learn to code!" (in quotes!).
8) Try typing your name with the opening quote, but without the closing quote. Read the error message!
9) Now try typing your name without any quotes. Read the error message!
10) Explain what you understand about how strings work in this programming language.

Operators

11) Just like math, Pyret has operators like + , , * and / . Try typing in $4+2$, and then $4+2$ (without the spaces). What can you conclude from this?
12) Type in the following expressions, one at a time: $4+2+6,4+2 \star 6,4+(2$ * 6$)$. What do you notice?
13) Try typing in 4 + "cat", and then "dog" + "cat". What can you conclude from this?

Booleans

Boolean-producing expressions are yes-or-no questions and will always evaluate to either true ("yes") or false ("no"). What will each of the expressions below evaluate to? Write down your prediction in the blanks provided and then type the code into the interactions area to see what it returns.

	Computer				Computer
	Prediction:	Returns:		Prediction:	Returns:
1) $3<=4$			2)"a" > "b"		
3) $3=2$			4)"a" > "b"		
5) $2<4$			6)"a" = = "b"		
7) $5>=5$			8)"a" <> "a"		
9) $4>=6$			10)"a" >= "a"		
11)3 <> 3			12)"a" <> "b"		

13) In your own words, describe what < does.
14) In your own words, describe what $>=$ does.
15) In your own words, describe what <> does.
Prediction: Computer Returns:
16)string-contains("catnap", "cat")
17)string-contains("cat", "catnap")
16) How many Numbers are there in the entire universe?
17) How many Strings are there in the entire universe?
18) How many Images are there in the entire universe?
19) How many Booleans are there in the entire universe?
\qquad
\qquad
20) How man Boolean are there in the entre universe?

Applying Functions

Type this line of code into the interactions area and hit "Enter":

```
triangle(50, "solid", "red")
```

1 What is the name of this function?

2 What did the expression evaluate to?
3 How many arguments does triangle expect?

4 What data type does the triangle function produce?
(Numbers? Strings? Booleans?)

Catching Bugs

The following lines of code are all BUGGY! Read the code and the error messages to identify the mistake.
5) triangle(20, "solid" "red")

Pyret didn't understand your program around
triangle(20, "solid" "red")

Can you spot the mistake?
6) triangle(20, "solid")

This application expression errored:
triangle(20, "solid")
$\underline{2}$ arguments were passed to the operator. The operator evaluated to a function accepting 3 parameters. An application expression expects the number of parameters and arguments to be the same.

Can you spot the mistake?
7) triangle(20, 10, "solid", "red")

This application expression errored:
triangle (20, 10, "solid", "red")'
4 arguments were passed to the operator. The operator evaluated to a function accepting 3 parameters. An application expression expects the number of parameters and arguments to be the same.

Can you spot the mistake?
8) triangle (20, "solid", "red")

Pyret thinks this code is probably a function call:
triangle (20, "solid", "red")
Function calls must not have space between the function expression and the arguments.

Can you spot the mistake?

Practicing Contracts: Domain \& Range

Consider the following contract:

```
is-beach-weather :: Number, String -> Boolean
```

1) What is the Name of this function? \qquad
2) How many arguments are in this function's Domain?
3) What is the type of this function's first argument ? \qquad
4) What is the type of this function's second argument? \qquad
5) What is the Range of this function?
6) Circle the expression below that shows the correct application of this function, based on its contract.
A.is-beach-weather (70, 90)
B. is-beach-weather (80, 100, "cloudy")
C. is-beach-weather ("sunny", 90)
D. is-beach-weather (90, "stormy weather")

Consider the following contract:
cylinder :: Number, Number, String -> Image
7) What is the Name of this function? \qquad
8) How may arguments are in this function's Domain? \qquad
9) What is the type of this function's first argument ? \qquad
10) What is the type of this function's second argument? \qquad
11) What is the type of this function's third argument? \qquad
12) What is the Range of this function? \qquad
13) Circle the expression below that shows the correct application of this function, based on its contract.
A. cylinder("red", 10, 60)
B. cylinder(30, "green")
C. cylinder(10, 25, "blue")
D.cylinder(14, "orange", 25)

Matching Expressions and Contracts

Match the contract (left) with the expression described by the function being used (right).

Contract		Expression
\# make-id : : String, Number -> Image	1	A make-id("Savannah", "Lopez", 32)
\# make-id : : String, Number, String -> Image	2	B make-id("Pilar", 17)
\# make-id : : String -> Image	3	C make-id("Akemi", 39, "red")
\# make-id : : String, String -> Image	4	D make-id("Raïssa", "McCracken")
\# make-id : : String, String, Number -> Image	5	E make-id("von Einsiedel")

Using Contracts

Use the contracts to write expressions to generate images similar to those pictured.

```
ellipse:: Number, Number, String, String -> Image
```

What changes with the first number?
What about the shape changes with the
Second Number?
regular-polygon :: Number, Number, String, String -> Image

What changes with the first Number?	
What about the shape changes with the	
Use regular-polygon to write an	
How would you describe a regular	
expression for a square!	
polygon to a friend?	

Triangle Contracts

1) What kind of triangle does the triangle function produce?

There are lots of other kinds of triangles! And Pyret has lots of other functions that make triangles!
triangle:: (size:: Number, style :: String, color :: String) -> Image
right-triangle :: (base::Number, height::Number, style::String, color::String) -> Image
isosceles-triangle :: (leg::Number, angle::Number, style::String, color::String) -> Image
2) Why do you think triangle only needs one number, while right-triangle and isosceles-triangle need two numbers and triangle-sas needs three?
3) Write right-triangle expressions for the images below. One argument for each should be 100 .

\qquad
4) What do you think the numbers in right-triangle represent? \qquad
5) Write isosceles-triangle expressions for the images below. 1 argument for each should be 100 .

\qquad
\qquad
6) What do you think the numbers in isosceles-triangle represent?
7) Write 2 expressions that would build right-isosceles triangles. Use right-triangle for one expression and isoscelestriangle for the other expression.

Radial Star

```
radial-star :: (
    points :: Number,
    inner-radius :: Number,
    full-radius :: Number,
    style :: String,
    color :: String
) -> Image
```

Using the detailed contract above, match each image to the expression that describes it.
Image Expression

2

3

4

5

7
G

What's on your mind?

Diagramming Function Composition

f : : Number -> Number
Consumes a number, multiplies by 3
to produce the result
$f(x)=3 x$
g : : Number -> Number
Consumes a number, adds six to produce the result
h :: Number -> Number
Consumes a number, subtracts one to produce the result

For each function composition diagrammed below, translate it into the equivalent Circle of Evaluation for Order of Operations. Then write expressions for both versions of the Circles of Evaluation, and evaluate them for $x=4$. The first one has been completed for you.

Function
Order of Operations
Translate \& Evaluate
Composition

Composition:	$h(g(f(x)))$
Operations:	$((3 * x)+6)-1$
Evaluate for $\mathrm{x}=4$	$h(g(f(4)))=17$

Composition:	
Operations:	
Evaluate for $x=4$	

Composition:

Operations:

Evaluate for $x=4$

Composition:

Operations:

Evaluate for $x=4$

Function Composition - Green Star

1) Draw a Circle of Evaluation and write the Code for a solid, green star, size 50.

Circle of Evaluation:

Code: \qquad

Using the star described above as the original , draw the Circles of Evaluation and write the Code for each exercise below.
2) A solid, green star, that is triple the size of the original (using
scale)

Circle of Evaluation:

Code: \qquad
4) A solid, green star of size 50 that has been rotated 45 degrees counter-clockwise
Circle of Evaluation:
3) A solid, green star, that is half the size of the original (using scale)

Circle of Evaluation:

Code: \qquad
5) A solid, green star that is 3 times the size of the original and has been rotated 45 degrees
Circle of Evaluation:

Code: \qquad Code: \qquad

Function Composition - Your Name

You'll be investigating these functions with your partner:

```
# text :: String, Number, String -> Image # frame :: Image -> Image
# flip-horizontal :: Image -> Image # above :: Image, Image -> Image
# flip-vertical :: Image -> Image # beside :: Image, Image -> Image
```

1) In the editor, write the code to make an image of your name in big letters in a color of your choosing using text . Then draw the Circle of Evaluation and write the Code that will create the image.

Circle of Evaluation:

Code:

\qquad
Using the "image of your name" described above as the original , draw the Circles of Evaluation and write the Code for each exercise below. Test your ideas in the editor to make sure they work.
2) The framed "image of your name".

Circle of Evaluation:

Code: \qquad
4) The "image of your name" above "the image of your name" flipped vertically.

Circle of Evaluation:
3) The "image of your name" flipped vertically. Circle of Evaluation:

Code: \qquad
5) The "image of your name" flipped horizontally beside "the image of your name".

Circle of Evaluation:

Code: \qquad

Function Composition - scale-xy

You'll be investigating these two functions with your partner:

The Image:	Circle of Evaluation:	Code:
	(cher ${ }^{\|c\|}$ rhombus	rhombus (40, 90, "solid", "purple")

Starting with the image described above, write the Circles of Evaluation and Code for each exercise below. Be sure to test your code in the editor!

Read through these 4 expressions and try to picture the images they are composing. If you're not sure what they'll look like, type them into the interactions area of your editor and see if you can figure out how the code connects to the image.
beside(rectangle(200, 100, "solid", "black"), square(100, "solid", "black"))
scale-xy (1, 2, square(100, "solid", "black"))
scale(2, rectangle(100, 100, "solid", "black"))
rectangle(100, 50, "solid", "black"),
rectangle(200, 100, "solid", "black"),
rectangle(100, 50, "solid", "black")))
above
For each image below, identify 2 expressions that could be used to compose it. The bank of expressions at the top of the page includes one possible option for each image.
More than one way to Compose an Image!

Defining Values

In math, we use values like $-98.1,2 / 3$ amd 42 . In math, we also use expressions like $1 \times 3, \sqrt{16}$, and $5-2$. These evaluate to results, and typing any of them in as code produces some answer.

Math also has definitions. These are different from values and expressions, because they they do not produce results. Instead, they simply create names for values, so that those names can be re-used to make the Math simpler and more efficient.

Definitions always have both a name and an expression. The name goes on the left and the value-producing expression goes on the right, separated by an equals sign:
$x=4$
$y=9+x$

The name is defined to be the result of evaluating the expression. Using the above examples, we get "x is defined to be 4, and y is defined to be 13". Important: there is no "answer" to a definition, and typing in a definition as code will produce no result.

Notice that definitions can refer to previous definitions. In the example above, the definition of y refers to x. But x, on the other hand, cannot refer to y. Once a value has been defined, it can be used in later expressions.

In Pyret, these definitions are written the exact same way:
Try typing these definitions into the Definitions Area on the left, clicking "Run", and then using them in the Interactions Area on the right.

```
x = 4
y = 9 + x
```

Just like in math, definitions in our programming language can only refer to previously-defined values.

Here are a few more value definitions. Feel free to type them in, and make sure you understand them.

```
x = 5 + 1
y = x * 7
food = "Pizza!"
dot = circle(y, "solid", "red")
```


Defining Values - Explore

Open the Defining Values Starter File and click run.

1) What do you notice?
\qquad
\qquad
2) What do you wonder?
\qquad
\qquad

Look at the expressions listed below. Think about what you expect each of them to produce. Then, test them out one at a time in the Interactions Area.

- x
- $x+5$
- y - 9
- $x^{*} y$
- z
- t
- gold-star
- my-name
- swamp
-

3) What have you learned about defining values?
\qquad
\qquad
\qquad
4) Define at least 2 more variables in the definitions area, click run and test them out. Once you know they're working, record the code you used below.
\qquad
\qquad

Defining Values - Chinese Flag

1) What image do you see repeated in the flag?
2) Highlight or circle all instances of the structure that makes the repeated image in the code below.
3) In the code below, highlight or circle all instances of the expression for that image.
```
put-image(
    rotate(40, star(15, "solid", "yellow")),
    120, 175,
    put-image(
        rotate(80, star(15, "solid", "yellow")),
        140, 150,
        put-image(
            rotate(60, star(15, "solid", "yellow")),
            140, 120,
            put-image(
            rotate(40, star(15, "solid", "yellow")),
            120, 90,
            put-image(scale(3, star(15, "solid", "yellow")),
                    60, 140,
                    rectangle(300, 200, "solid", "red"))))))
```

4) Write the code to define a value for the repeated expression.
5) Open the Chinese flag starter file (Pyret) and click Run.

Then type china into the interactions area and click Enter.
6) Save a copy of the file, and simplify the flag code using the value you defined. Click Run, and confirm that you still get the same image as the original.
7) Now change the color of all of the stars to black, in both files. Then change the size of the stars.
8) Why is it helpful to define values for repeated images?

Challenge:

- This file uses a function we haven't seen before! What is it? \qquad
- Can you figure out its contract? Hint: Focus on the last instance of the function.
Use the defined value sunny to simplify!

Original Circle of Evaluation \& Code	\rightarrow	Use the defined value sunny to simplify!
	\rightarrow	
code: scale(3, radial-star(30, 20, 50, "solid", "yellow"))	\rightarrow	Code: scale (3, sunny)
	\rightarrow	
code: frame(radial-star(30, 20, 50, "solid", "yellow"))	\rightarrow	Code:
	\rightarrow	
Code: overlay(text("sun", 30, "black"), radial-star(30, 20, 50, "solid", "yellow"))	\rightarrow	Code:

Which Value(s) Would it Make Sense to Define?

For each of the images below, identify which element(s) you would want to define before writing code to compose the image. Hint: what gets repeated?

Writing Code using Defined Values

1) On the line below, write the Code to define PRIZE-STAR as a pink, outline star of size 65.

Using the PRIZE-STAR definition from above, draw the Circle of Evaluation and write the Code for each of the exercises. One Circle of Evaluation has been done for you.

2 The outline of a pink star that is three times the size of the original (using scale) Circle of Evaluation:	3 The outline of a pink star that is half the size of the original (using scale) Circle of Evaluation:
Code:	Code:
4 The outline of a pink star that is rotated 45 degrees (It should be the same size as the original.) Circle of Evaluation:	5 The outline of a pink star that is three times as big as the original and has been rotated 45 degrees Circle of Evaluation:
Code:	Code:

6) How does defining values help you as a programmer?

Estimating Coordinates

Think of the background image as a sheet of graph paper with the origin $(0,0)$ in the bottom left corner.
The numbers in put-image specify a point on that graph paper, where the center of the top image should be placed.

The width of the rectangle is 300 and the height is 200 . The definitions for dot and background are:

```
dot = circle(50, "solid", "red")
background = rectangle(300, 200, "outline", "black")
```

Estimate: What coordinates for the dot would create each of the following images?

put-image(dot, \qquad , \qquad background)

C \square
put-image(dot, \qquad
\qquad background)

put-image(dot, \qquad , background)

put-image(dot, \qquad , background)

Decomposing Flags

Each of the flags below is shown with their width and height. Identify the shapes that make up each flag. Use the flag's dimensions to estimate the dimensions of the different shapes. Then estimate the x and y coordinates for the point at which the center of each shape should be located on the flag. Hint: The bottom left corner of each flag is at $(0,0)$ and the top right corner is given by the flags dimensions.

| shape: | color: | width: height: | x | y | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |

| shape: | color: | width: height: | x | \mathbf{y} | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |

Defining Functions

Functions can be viewed in multiple representations. You already know one of them: Contracts, which specify the Name, Domain, and Range of a function. Contracts are a way of thinking of functions as a mapping between one set of data and another. For example, a mapping from Numbers to Strings:
f :: Number -> String

Another way to view functions is with Examples. Examples are essentially input-output tables, showing what the function would do for a specific input:

In our programming langauge, we focus on the last two columns and write them as code:

```
examples:
    f(1) is 1 + 2
    f(2) is 2 + 2
    f(3) is 3 + 2
    f(4) is 4 + 2
end
```

Finally, we write a formal function definition ourselves. The pattern in the Examples becomes abstract (or "general"), replacing the inputs with variables. In the example below, the same definition is written in both math and code:
$f(x)=x+2$
fun $f(x): x+2$ end

Look for connections between these three representations!

- The function name is always the same, whether looking at the Contract, Examples, or Definition.
- The number of inputs in the Examples is always the same as the number of types in the Domain, which is always the same as the number of variables in the Definition.
- The "what the function does" pattern in the Examples is almost the same in the Definition, but with specific inputs replaced by variables.

Look at each set of examples on the left and circle what is changing from one example to the next.
Then, match the examples on the left to the definitions on the right.

Examples:

x	$f(x)$
1	2×1
2	2×2
3	2×3

x	$f(x)$
15	$15-3$
25	$25-3$
35	$35-3$

2

x	$f(x)$
10	$10+2$
15	$15+2$
20	$20+2$

x	$f(x)$
0	$3(0)-2$
1	$3(1)-2$
	4
2	$3(2)-2$

x	$f(x)$
10	$2(10)+1$
20	$2(20)+1$
	5
30	$2(30)+1$

Functions:

A $\quad f(x)=x-3$

B $f(x)=2 x$

C $f(x)=2 x+1$

D $f(x)=3 x-2$

E $\quad f(x)=x+2$

Matching Examples and Function Definitions

Highlight the variables in gt and label them with the word "size".

```
examples:
    gt(20) is
        triangle(20, "solid", "green")
    gt(45) is
        triangle(45, "solid", "green")
end
fun gt(size): triangle(size, "solid", "green") end
```

Highlight and label the variables in the example lists below. Then, using gt as a model, match the examples to their corresponding function definitions.
Examples \quad Definition

```
examples:
    f("solid") is
        circle(8, "solid", "red")
    f("outline") is
        circle(8, "outline", "red")
end
```

examples:
$f(2)$ is $2+2$
$f(4)$ is $4+4$
$f(5)$ is $5+5$
end

examples:

```
    f("red") is circle(7, "solid", "red")
    f("teal") is
        circle(7, "solid", "teal")
end
```


examples:

```
    f("red") is star(9, "solid", "red")
    f("pink") is star(9, "solid", "pink")
end
```

 f("grey") is star(9, "solid", "grey") 4

examples:

```
    f(3) is star(3, "outline", "red")
    f(8) is star(8, "outline", "red")
```

end
Match each set of examples (left) with the contract that best describes it(right).

Contract

\# f :: Number -> Number
\# f : : String -> Image
\# f : : Number -> Image
\# f : : Number, String $->$ Image

u
N
∞
$<$
r
๓

in
Examples
examples:
$f(5)$ is $5 / 2$
$f(9)$ is $9 / 2$
$f(24)$ is $24 / 2$
end
end
examples:
$\quad f(1)$ is
\quad rectangle(1, 1, "outline", "red")
$f(6)$ is
\quad rectangle(6, 6, "outline", "red")
end
end
examples:
f("pink"
f("pink", 5) is
star(5, "solid", "pink")
f("blue", 8) is
star(8, "solid", "blue")
end
examples:
$f(" H i!")$ is text("Hi!", 50, "red")
$f(" C i a o!")$ is text("Ciao!", 50, "red")
end
examples:
f(5, "outline") is
star(5, "outline", "yellow")
f(5, "solid") is
star(5, "solid", "yellow")
end

Contracts, Examples \& Definitions

What's on your mind?

Solving Word Problems

Being able to see functions as Contracts, Examples or Definitions is like having three powerful tools. These representations can be used together to solve word problems!

1) When reading a word problem, the first step is to figure out the Contract for the function you want to build. Remember, a Contract must include the Name, Domain and Range for the function!
2) Then we write a Purpose Statement, which is a short note that tells us what the function should do. Professional programmers work hard to write good purpose statements, so that other people can understand the code they wrote!
3) Next, we write at least two Examples. These are lines of code that show what the function should do for a specific input. Once we see examples of at least two inputs, we can find a pattern and see which parts are changing and which parts aren't.
4) To finish the Examples, we circle the parts that are changing, and label them with a short variable name that explains what they do.
5) Finally, we define the function itself! This is pretty easy after you have some examples to work from: we copy everything that didn't change, and replace the changeable stuff with the variable name!

Creating Contracts From Examples

Write the contracts used to create each of the following collections of examples.
1)
examples:
big-triangle(100, "red") is
triangle(100, "solid", "red")
big-triangle(200, "orange") is
triangle(200, "solid", "orange")
end
2)

examples:

purple-square(15) is

```
        rectangle(15, 15, "outline", "purple")
```

 purple-square(6) is
 rectangle(6, 6, "outline", "purple")
 end
3)
examples:
banner("Game Today!") is text("Game Today!", 50, "red")
banner("Go Team!") is text("Go Team!", 50, "red")
banner("Exit") is
end
4)
examples:
twinkle("outline", "red") is star(5, "outline", "red")
twinkle("solid", "pink") is star(5, "solid", "pink")
twinkle("outline", "grey") is star(5, "outline", "grey")
end
5)
examples:
half(5) is $5 / 2$
half(8) is 8 / 2
half(900) is $900 / 2$
end

Writing Examples from Purpose Statements

We've provided contracts and purpose statements to describe two different functions. Write examples for each of those functions.

Contract and Purpose Statement

Every contract has three parts...

\# Consumes an image, and flips it upside down by rotating it 180 degrees.
what does the function do?
Examples
Write some examples, then circle and label what changes...
examples:
\qquad
\qquad) is
function name

end

Contract and Purpose Statement			
Every contract has three parts...			
\# product-squared::	Number, Number	->	Number
Examples			

Write some examples, then circle and label what changes...
examples:

Word Problem: rocket-height

Directions : A rocket blasts off, and is now traveling at a constant velocity of 7 meters per second. Use the Design Recipe to write a function rocket-height, which takes in a number of seconds and calculates the height.
Contract and Purpose Statement
Every contract has three parts...
\qquad
\qquad -> \qquad
\#
function name
what does the function do?

Examples

Write some examples, then circle and label what changes...

examples:

Definition
Write the definition, giving variable names to all your input values...
fun \qquad (\qquad):
function name
variable(s)
end

Unit 3 (Structures, Reactor, \& Animations)

Identifying Animation Data Worksheet

Draw a sketch for three distinct moments of the animation

Sketch A

Sketch B

Sketch C

What things are changing?		Describe how it changes
Thing		
		Data Type (Number, String, Image, Boolean ...)
What fields do you need to represent the things that change?		
Field name (dangerX, score, playerIMG ...)		

Data Structure

\# a

Make a sample instance for each sketch from the previous page:

Word Problem: draw-state

Write a function called draw-state, which takes in a SunsetState and returns an image in which the sun (a circle) appears at the position given in the SunsetState. The sun should be behing the horizon (the ground) once it is low in the sky.

Word Problem: next-state-tick

Directions: Write a function called next-state-tick, which takes in a SunsetState and returns a SunsetState in which the new x-coordinate is 8 pixels larger than in the given SunsetState and the y-coordinate is 4 pixels smaller than in the given SunsetState.

Contract and Purpose Statement

Every contract has three parts...
\qquad :: \qquad -> \qquad
\#
function name
domain
range
\qquad

Examples

Write some examples, then circle and label what changes...
examples:
\qquad

1 \qquad

is \qquad
end
Definition
Write the definition, giving variable names to all your input values...
fun
 (\qquad):
function name variable(s)
what the function does with those variable(s)
end

Identifying Animation Data Worksheet

Draw a sketch for three distinct moments of the animation

Sketch A

Sketch B

Sketch C

What things are changing?		Describe how it changes
Thing		
		Data Type (Number, String, Image, Boolean ...)
What fields do you need to represent the things that change?		
Field name (dangerX, score, playerIMG ...)		

Data Structure

\# a

Make a sample instance for each sketch from the previous page:

Identifying Animation Data Worksheet

Draw a sketch for three distinct moments of the animation

Sketch A

Sketch B

Sketch C

What things are changing?		Describe how it changes
Thing		
		Data Type (Number, String, Image, Boolean ...)
What fields do you need to represent the things that change?		
Field name (dangerX, score, playerIMG ...)		

Data Structure

\# a

Make a sample instance for each sketch from the previous page:

Identifying Animation Data Worksheet

Draw a sketch for three distinct moments of the animation

Sketch A

Sketch B

Sketch C

What things are changing?		Describe how it changes
Thing		
		Data Type (Number, String, Image, Boolean ...)
What fields do you need to represent the things that change?		
Field name (dangerX, score, playerIMG ...)		

Data Structure

\# a

Make a sample instance for each sketch from the previous page:

Identifying Animation Data Worksheet

Draw a sketch for three distinct moments of the animation

Sketch A

Sketch B

Sketch C

What things are changing?		Describe how it changes
Thing		
		Data Type (Number, String, Image, Boolean ...)
What fields do you need to represent the things that change?		
Field name (dangerX, score, playerIMG ...)		

Data Structure

\# a

Make a sample instance for each sketch from the previous page:

Word Problem: location

Directions: Write a function called location, which consumes a DeliveryState, and produces a String representing the location of a box: either "road", "delivery zone", "house", or "air".

Contract and Purpose Statement

Every contract has three parts...
\#
function name \qquad -> \qquad
what does the function do?

Examples
Write some examples, then circle and label what changes...
examples:

end
Definition
Write the definition, giving variable names to all your input values...
fun \qquad (\qquad):
function name
variable(s)
\qquad
end

Syntax and Style Bug Hunting: Piecewise Edition

	Buggy Code	Correct Code / Explanation
1	```fun piecewisefun(n): if (n > 0): n else: 0```	
2	```fun cost(topping): if string-equal(topping, "pepperoni"): 10.50 else string-equal(topping, "cheese"): 9.00 else string-equal(topping, "chicken"): 11.25 else string-equal(topping, "broccoli"): 10.25 else: "That's not on the menu!" end end```	
3	```fun absolute-value(a b): if a > b: a - b b - a end end```	
4	```fun best-function(f): if string-equal(f, "blue"): "you win!" else if string-equal(f, "blue"): "you lose!" else if string-equal(f, "red"): "Try again!" else: "Invalid entry!" end end```	

Animation Data Worksheet

Decrease the cat's hunger level by 2 and sleep level by 1 on each tick.

Draw a sketch for three distinct moments of the animation

1) Make a sample instance for each sketch from the previous page:
\qquad $=$
\qquad
\qquad
\qquad
\qquad
2) Write at least one NEW example for one of the functions on your To-Do list
\qquad
\qquad
\qquad
\qquad
3) If you have another function on your To-Do list, write at least one NEW example
\qquad
\qquad
\qquad
\qquad
\qquad

Word Problem: draw-sun

Directions: Write a function called draw-sun, which consumes a SunsetState, and produces an image of a sun (a solid, 25 pixel circle), whose color is "yellow", when the sun's y-coordinate is greater than 225, "orange", when its y-coordinate is between 150 and 225 , and "red" otherwise.
Contract and Purpose Statement
Every contract has three parts...

\qquad -> \qquad
\# \qquad
what does the function do?
Examples

Write some examples, then circle and label what changes...

examples:

Definition
Write the definition, giving variable names to all your input values...
fun \qquad (\qquad
function name variable(s)
end

Unit 5 (Key Events)

Animation Data Worksheet

Decrease the cat's hunger level by 2 and sleep level by 1 on each tick.

1) Make a sample instance for each sketch from the previous page:
\qquad
\qquad $=$

$$
\operatorname{pet}(50,75)
$$

\qquad $=$
2) Write at least one NEW example for one of the functions on your To-Do list next-state-tick(FULLPET) is pet(FULLPET.hunger - 2, FULLPET.sleep - 1) next-state-tick(MIDPET) is pet(MIDPET.hunger - 2, MIDPET.sleep - 1) next-state-tick(LOSEPET) is LOSEPET
3) If you have another function on your To-Do list, write at least one NEW example
\qquad
\qquad
\qquad
\qquad
\qquad

Animation Data Worksheet

Decrease the cat's hunger level by 2 and sleep level by 1 on each tick.

Draw a sketch for three distinct moments of the animation

1) Make a sample instance for each sketch from the previous page:
\qquad $=$
\qquad
\qquad
\qquad
\qquad
2) Write at least one NEW example for one of the functions on your To-Do list
\qquad
\qquad
\qquad
\qquad
3) If you have another function on your To-Do list, write at least one NEW example
\qquad
\qquad
\qquad
\qquad
\qquad

Animation Data Worksheet

Decrease the cat's hunger level by 2 and sleep level by 1 on each tick.

Draw a sketch for three distinct moments of the animation

1) Make a sample instance for each sketch from the previous page:
\qquad $=$
\qquad
\qquad
\qquad
\qquad
2) Write at least one NEW example for one of the functions on your To-Do list
\qquad
\qquad
\qquad
\qquad
3) If you have another function on your To-Do list, write at least one NEW example
\qquad
\qquad
\qquad
\qquad
\qquad

Animation Data Worksheet

Decrease the cat's hunger level by 2 and sleep level by 1 on each tick.

Draw a sketch for three distinct moments of the animation

end

Make a sample instance for each sketch from the previous page \square

\qquad
\qquad
\qquad

Distance

The Player is at $(4,2)$ and the Target is at $(0,5)$.
Distance takes in the player's x, player's y, character's x and character's y. Use the formula below to fill in the EXAMPLE:
$\sqrt{(4-0)^{2}+(2-5)^{2}}$
Convert it into a Circle of Evaluation. (We've already gotten you started!)

Convert it to Pyret code.

Word Problem: distance

Directions: Write a function distance, which takes FOUR inputs: (1) px: The x-coordinate of the player, (2) py: The y-coordinate of the player, (3) cx: The x-coordinate of another game character, (4) cy: The y-coordinate of another game character. It should return the distance between the two, using the Distance formula: Distance ${ }^{2}=(p x-c x)^{2}+(p y-c y)^{2}$

Contract and Purpose Statement

Every contract has three parts...
\# \quad function name \qquad -> \qquad
\# what does the function do?
Examples

Write some examples, then circle and label what changes...

examples:

Definition
Write the definition, giving variable names to all your input values...

end

Word Problem: is-collision

Directions: Write a function is-collision, which takes FOUR inputs: (1) px: The x-coordinate of the player, (2) py: The y-coordinate of the player, (3) cx: The x-coordinate of another game character, (4) cy: The y-coordinate of another game character. It should return true if the coordinates of the player are within 50 pixels of the coordinates of the other character. Otherwise, false.

Contract and Purpose Statement

Every contract has three parts...
\# \quad function name \qquad -> \qquad
\# what does the function do?
Examples

Write some examples, then circle and label what changes...

examples:

Definition
Write the definition, giving variable names to all your input values...

end

Notes

Making Pong

Directions:sp
sp
sp
Contract and Purpose Statement
Every contract has three parts...

Write some examples, then circle and label what changes...

examples:

Definition
Write the definition, giving variable names to all your input values...

end

Directions:sp
sp
sp
Contract and Purpose Statement
Every contract has three parts...

Write some examples, then circle and label what changes...

examples:

Definition
Write the definition, giving variable names to all your input values...

end

Animation Data Worksheet

Decrease the cat's hunger level by 2 and sleep level by 1 on each tick.

end

Make a sample instance for each sketch from the previous page \square

\qquad
\qquad
\qquad

Animation Data Worksheet

Decrease the cat's hunger level by 2 and sleep level by 1 on each tick.

end

Make a sample instance for each sketch from the previous page \square

\qquad
\qquad
\qquad

Animation Data Worksheet

Decrease the cat's hunger level by 2 and sleep level by 1 on each tick.

end

Make a sample instance for each sketch from the previous page \square

\qquad
\qquad
\qquad
Contracts tell us how to use a function. For example: num-sqr two-colons (n two-colons Number) -> Number tells us that the name of the function is num-sqr, it takes one input (a Number), and it evaluates to a Number. From the contract, we know num-sqr(4) will evaluate to a Number

Name		Domain		Range
\# triangle	:	(side-length :: Number, style :: String, color :: String)	->	Image
\#				
\# circle	:	(radius :: Number, style :: String, color :: String)	->	Image
\#				
\# star	:	(radius :: Number, style :: String, color :: String)	->	Image
\#				
\# rectangle	:	(width :: Num, height : : Num, style :: Str, color :: Str)	->	Image
\#				
\# ellipse	:	(width :: Num, height : : Num, style : : Str, color :: Str)	->	Image
\#				
\# square	:	(size-length :: Number, style :: String, color :: String)	->	Image
\#				
\# text	:	(str :: String, size :: Number, color :: String)	->	Image
\#				
\# overlay	:	(img1 :: Image, img2 :: Image)	->	Image
\#				
\# beside	:	(img1 :: Image, img2 :: Image)	->	Image
\#				
\# image-url	:	(url : : String)	->	Image
\#				

[^0] evaluates to a Number. From the contract, we know num-sqr(4) will evaluate to a Number.

Name	Domain		Range	
\# above	:	(img1 : : Image, img2 :: Image)	->	Image
\#				
\# put-image	:	(img1 :: Image, x :: Number, y :: Number, img2 :: Image)	->	Image
\#				
\# rotate	:	(degree :: Number, img :: Image)	->	Image
\#				
\# scale	:	(factor : : Number, img : : Image)	->	Image
\#				
\# string-repeat	:	(text : : String, repeat : : Number)	->	String
\#				
\# string-contains	:	(text : : String, search-for : : String)	->	Boolean
\#				
\# num-sqr	:	(n : : Number)	->	Number
\#				
\# num-sqrt	:	(n : : Number)	->	Number
\#				
\# num-min	:	($\mathrm{a}:$: Number, b: ${ }^{\text {a }}$ Number)	->	Number
\#				
\# num-max	:	($\mathrm{a}:$: Number, b:: Number)	->	Number
\#				

Contracts tell us how to use a function. For example: num-sqr : ($\mathrm{n}:$: Number) -> Number tells us that the name of the function is num-sqr , it takes one input (a Number), and it evaluates to a Number. From the contract, we know num-sqr(4) willevaluate to a Number

Name		Domain	Range	
\# string-equal	:	(str1 : : String, str2 :: String)	->	Boolean
\#				
\# and	:	(test1 :: Boolean, test2 :: Boolean)	->	Boolean
\#				
\# or	:	(test1 :: Boolean, test2 :: Boolean)	->	Boolean
\#				
\#	:		->	
\#				
\#	:		->	
\#				
\#	:		->	
\#				
\#	:		->	
\#				
\#	: :		->	
\#				
\#	:		->	
\#				
\#	:		->	
\#				

These materials were developed partly through support of the National Science Foundation, (awards 1042210, 1535276, 1648684, and 1738598), and are licensed under a Creative Commons 4.0 Unported License. Based on a work at www.BootstrapWorld.org. Permissions beyond the scope of this license may be available by contacting schanzer@BootstrapWorld.org.

[^0]: Contracts tell us how to use a function. For example: num-sqr : ($\mathrm{n}:$: Number) \rightarrow Number tells us that the name of the function is num-sqr , it takes one input (a Number), and it

