elegant-move

So far we have:

- A state consisting of a snake with a head and a tail, and parameters that control the

motion of the head

- A snake head that moves correctly by keyboard inputs

- Aninitial state that includes a list of positions representing a 3-block long tail. The last

item in the tail is the block closest to the head.
- The tails defined by the List are displayed by draw-state but don’t move!

Problem:

When the “head” of the snake moves one unit, the list of positions updates so that it moves like

a “snake.”

The head is moving on its own. It will be helpful to sketch examples with the head in mind, but

the function elegant-move will not update the head’s motion. We still need the current head

position, as we will see.

1. Sketches

Look at this drawing of the snake in its current position. The head’s next position will be one

block to the right.

We are going to write the position list so that the LAST element is nearest the head. (This is the

trick that makes it all work elegantly!)

' Position values held in current-tail : . Paosition values output by '

: E i elegant-move |

E icurrent- |

: te = tl = t2 = i :

|| posn(posn(posn(22s || "2 = ||| pasn{T pﬂgn{T pﬂsn{T

E e - {posn(275 || | , 225 , 225 , 225

. 225) s 225) s 225) L, 225) |

Write the list of tail positions before Write the list of tail positions after:

elegant-move:)

[list: pos(s), [list: pos(__,)
pos()) pos(___,)

pos (,)] pos(__»)]

Write the current-head position: Convince yourself this also works:
current-head = pos(s)
[list: pos(___ ,)
pos(__ ,)>
current-head])
2. Design:
Contract:
elegant-move: current-tail :: , current-head:: ->

Purpose Statement Restating the Contract:

Examples:
These examples are chosen so that we crunch the whole list, then just the rest. Then repeat for
the rest, until we run out of elements.

elegant-move(is [list: pos(___ ,)
[list: pos(___ ,)
pos(225 , 225),
pos(__,)>
pos(>)]
pos(225 , 225)],
current-head)
elegant-move(is [list: pos(___)
[list: pos(____)
pos(__,)]
pos(225 , 225)],
current-head)
elegant-move(is [list: posn(,)]

[list: pos(225 , 225)],
current-head)

elegant-move(is [list:]
[list:], current-head)

Go back to the examples and for each input case, circle the first element of the input List
and label it.

Now for each case, circle the rest of the input list and label it.
Anywhere you see the value of current-head, cross it out and write current-head.
Are first and/or rest present in the outputs? Explain:
How can we write each of the answers in terms of first, rest and current-head?
Hint: the method a.append(b) adds List b to the back of List a.
What if the list is empty?
Definition:
fun elegant-move(t, h):
current-tail = t,
current-head = h,

cases (t) List:
|empty =>

|1ink(f, r) =>
end

end

Implement:

To implement this in our code, we’'ll need to define the function, then figure out how to integrate
it into next-state-tick. Remember this function takes in an entire game state and returns a
new one.

